Improve model accuracy
Browse files- README.md +13 -19
- config.json +1 -1
- model.safetensors +1 -1
- training_args.bin +2 -2
README.md
CHANGED
|
@@ -9,7 +9,7 @@ datasets:
|
|
| 9 |
metrics:
|
| 10 |
- accuracy
|
| 11 |
model-index:
|
| 12 |
-
- name: vit-base-patch16-224-in21k
|
| 13 |
results:
|
| 14 |
- task:
|
| 15 |
name: Image Classification
|
|
@@ -20,18 +20,18 @@ model-index:
|
|
| 20 |
metrics:
|
| 21 |
- name: Accuracy
|
| 22 |
type: accuracy
|
| 23 |
-
value: 0.
|
| 24 |
---
|
| 25 |
|
| 26 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 27 |
should probably proofread and complete it, then remove this comment. -->
|
| 28 |
|
| 29 |
-
# vit-base-patch16-224-in21k
|
| 30 |
|
| 31 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar-10 dataset.
|
| 32 |
It achieves the following results on the evaluation set:
|
| 33 |
-
- Loss: 0.
|
| 34 |
-
- Accuracy: 0.
|
| 35 |
|
| 36 |
## Model description
|
| 37 |
|
|
@@ -41,15 +41,6 @@ More information needed
|
|
| 41 |
|
| 42 |
More information needed
|
| 43 |
|
| 44 |
-
## How to Use
|
| 45 |
-
|
| 46 |
-
```Python
|
| 47 |
-
from transformers import pipeline
|
| 48 |
-
|
| 49 |
-
pipe = pipeline("image-classification", "avanishd/vit-base-patch16-224-in21k-finetuned-cifar10")
|
| 50 |
-
pipe(image)
|
| 51 |
-
```
|
| 52 |
-
|
| 53 |
## Training and evaluation data
|
| 54 |
|
| 55 |
More information needed
|
|
@@ -68,18 +59,21 @@ The following hyperparameters were used during training:
|
|
| 68 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 69 |
- lr_scheduler_type: linear
|
| 70 |
- lr_scheduler_warmup_ratio: 0.1
|
| 71 |
-
- num_epochs:
|
|
|
|
| 72 |
|
| 73 |
### Training results
|
| 74 |
|
| 75 |
-
| Training Loss | Epoch
|
| 76 |
-
|
| 77 |
-
| 0.
|
|
|
|
|
|
|
| 78 |
|
| 79 |
|
| 80 |
### Framework versions
|
| 81 |
|
| 82 |
-
- Transformers 4.51.
|
| 83 |
- Pytorch 2.6.0+cu124
|
| 84 |
- Datasets 3.5.0
|
| 85 |
- Tokenizers 0.21.1
|
|
|
|
| 9 |
metrics:
|
| 10 |
- accuracy
|
| 11 |
model-index:
|
| 12 |
+
- name: vit-base-patch16-224-in21k-finetuned-cifar10
|
| 13 |
results:
|
| 14 |
- task:
|
| 15 |
name: Image Classification
|
|
|
|
| 20 |
metrics:
|
| 21 |
- name: Accuracy
|
| 22 |
type: accuracy
|
| 23 |
+
value: 0.9877
|
| 24 |
---
|
| 25 |
|
| 26 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 27 |
should probably proofread and complete it, then remove this comment. -->
|
| 28 |
|
| 29 |
+
# vit-base-patch16-224-in21k-finetuned-cifar10
|
| 30 |
|
| 31 |
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar-10 dataset.
|
| 32 |
It achieves the following results on the evaluation set:
|
| 33 |
+
- Loss: 0.1126
|
| 34 |
+
- Accuracy: 0.9877
|
| 35 |
|
| 36 |
## Model description
|
| 37 |
|
|
|
|
| 41 |
|
| 42 |
More information needed
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
## Training and evaluation data
|
| 45 |
|
| 46 |
More information needed
|
|
|
|
| 59 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 60 |
- lr_scheduler_type: linear
|
| 61 |
- lr_scheduler_warmup_ratio: 0.1
|
| 62 |
+
- num_epochs: 3
|
| 63 |
+
- mixed_precision_training: Native AMP
|
| 64 |
|
| 65 |
### Training results
|
| 66 |
|
| 67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
| 69 |
+
| 0.4166 | 1.0 | 313 | 0.2324 | 0.9791 |
|
| 70 |
+
| 0.3247 | 2.0 | 626 | 0.1320 | 0.9875 |
|
| 71 |
+
| 0.2661 | 2.992 | 936 | 0.1126 | 0.9877 |
|
| 72 |
|
| 73 |
|
| 74 |
### Framework versions
|
| 75 |
|
| 76 |
+
- Transformers 4.51.3
|
| 77 |
- Pytorch 2.6.0+cu124
|
| 78 |
- Datasets 3.5.0
|
| 79 |
- Tokenizers 0.21.1
|
config.json
CHANGED
|
@@ -45,5 +45,5 @@
|
|
| 45 |
"problem_type": "single_label_classification",
|
| 46 |
"qkv_bias": true,
|
| 47 |
"torch_dtype": "float32",
|
| 48 |
-
"transformers_version": "4.51.
|
| 49 |
}
|
|
|
|
| 45 |
"problem_type": "single_label_classification",
|
| 46 |
"qkv_bias": true,
|
| 47 |
"torch_dtype": "float32",
|
| 48 |
+
"transformers_version": "4.51.3"
|
| 49 |
}
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 343248584
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dbada918e6ecb8d9f2b92228584a9f1e7ba2f43d60cbac209f31943c1aaf0f2e
|
| 3 |
size 343248584
|
training_args.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bc783bca3f8a6d71a5c78b14f8ecf55a4e76f3b44ebd32bf193d31c994715ba3
|
| 3 |
+
size 5368
|