Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,242 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
metrics:
|
| 3 |
+
- pAUC
|
| 4 |
+
model-index:
|
| 5 |
+
- name: >-
|
| 6 |
+
avanishd/avanishd/vit-base-patch16-dinov3-finetuned-skin-lesion-classification
|
| 7 |
+
results:
|
| 8 |
+
- task:
|
| 9 |
+
name: Image Classification
|
| 10 |
+
type: image-classification
|
| 11 |
+
metrics:
|
| 12 |
+
- name: pAUC
|
| 13 |
+
type: pAUC
|
| 14 |
+
value: 0.1441070826953209
|
| 15 |
+
base_model:
|
| 16 |
+
- timm/vit_base_patch16_dinov3.lvd1689m
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# vit-base-patch16-dinov3-finetuned-skin-lesion-classification
|
| 20 |
+
|
| 21 |
+
This model is a finetuned for skin lesion classification.
|
| 22 |
+
|
| 23 |
+
## Intended Uses & Limitations
|
| 24 |
+
|
| 25 |
+
### Intended Use
|
| 26 |
+
|
| 27 |
+
This model is intended for dermoscopic skin lesion classification using a 224x224 image size.
|
| 28 |
+
|
| 29 |
+
### Limitations
|
| 30 |
+
|
| 31 |
+
This model was only trained for 1 epoch and has not seen many malignant examples (due to large class imbalance in ISIC 2024 dataset).
|
| 32 |
+
|
| 33 |
+
## How to Get Started with the Model
|
| 34 |
+
|
| 35 |
+
```Python
|
| 36 |
+
class DinoSkinLesionClassifier(nn.Module, PyTorchModelHubMixin):
|
| 37 |
+
"""
|
| 38 |
+
PytorchModelHubMixin adds push to Hugging Face Hub
|
| 39 |
+
|
| 40 |
+
See: https://huggingface.co/docs/hub/models-uploading#upload-a-pytorch-model-using-huggingfacehub
|
| 41 |
+
"""
|
| 42 |
+
def __init__(self, num_classes=1, freeze_backbone=True):
|
| 43 |
+
super(DinoSkinLesionClassifier, self).__init__()
|
| 44 |
+
|
| 45 |
+
# Initialize Dino v3 backbone
|
| 46 |
+
self.backbone = timm.create_model('vit_base_patch16_dinov3', pretrained=True, num_classes=0, global_pool='avg')
|
| 47 |
+
|
| 48 |
+
# Freeze backbone weights if requested
|
| 49 |
+
# This makes training much faster
|
| 50 |
+
if freeze_backbone:
|
| 51 |
+
for param in self.backbone.parameters():
|
| 52 |
+
param.requires_grad = False
|
| 53 |
+
|
| 54 |
+
# Get feature dimension from the backbone
|
| 55 |
+
feat_dim = self.backbone.num_features
|
| 56 |
+
|
| 57 |
+
# Define the classification head
|
| 58 |
+
self.head = nn.Linear(feat_dim, num_classes) # Should be 768 in, 1 out
|
| 59 |
+
|
| 60 |
+
def forward(self, x):
|
| 61 |
+
out = self.backbone(x)
|
| 62 |
+
out = self.head(out)
|
| 63 |
+
|
| 64 |
+
return out
|
| 65 |
+
|
| 66 |
+
from huggingface_hub import hf_hub_download
|
| 67 |
+
|
| 68 |
+
weights_path = hf_hub_download(
|
| 69 |
+
repo_id="avanishd/vit-base-patch16-dinov3-finetuned-skin-lesion-classification",
|
| 70 |
+
filename="model.safetensors"
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
from safetensors.torch import load_file
|
| 74 |
+
|
| 75 |
+
model = EfficientNetSkinLesionClassifier()
|
| 76 |
+
state = load_file(weights_path)
|
| 77 |
+
model.load_state_dict(state, strict=True)
|
| 78 |
+
|
| 79 |
+
model.eval() # Set model to evaluation mode
|
| 80 |
+
|
| 81 |
+
model.to(device) # Don't forget to put on GPU
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
# Example with PH2 Dataset
|
| 85 |
+
|
| 86 |
+
class PH2Dataset(Dataset):
|
| 87 |
+
"""
|
| 88 |
+
Dataset for PH2 images, which are in png format.
|
| 89 |
+
|
| 90 |
+
PH2 contains skin lesions images classified as
|
| 91 |
+
|
| 92 |
+
- Common Nevus (benign)
|
| 93 |
+
- Atypical Nevus (benign)
|
| 94 |
+
- Melanoma (malignant)
|
| 95 |
+
|
| 96 |
+
No need for is real label here, since this is purely for testing
|
| 97 |
+
"""
|
| 98 |
+
|
| 99 |
+
def __init__(self, dir_path, metadata, transform=None):
|
| 100 |
+
super(PH2Dataset, self).__init__()
|
| 101 |
+
|
| 102 |
+
self.dir_path = dir_path
|
| 103 |
+
self.transform = transform
|
| 104 |
+
|
| 105 |
+
self.image_files = [os.path.join(dir_path, f) for f in os.listdir(dir_path)
|
| 106 |
+
if f.lower().endswith(('.jpg', '.jpeg', '.png'))]
|
| 107 |
+
|
| 108 |
+
# Load metadata w/ polars (only 2 columns)
|
| 109 |
+
self.metadata = pl.read_csv(metadata)
|
| 110 |
+
|
| 111 |
+
self.diagnostic_mapping = {
|
| 112 |
+
"Common Nevus": 0,
|
| 113 |
+
"Atypical Nevus": 0,
|
| 114 |
+
"Melanoma": 1,
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
def __len__(self):
|
| 118 |
+
return len(self.image_files)
|
| 119 |
+
|
| 120 |
+
def __getitem__(self, idx):
|
| 121 |
+
# The image name in the metadata csv are like IMD003
|
| 122 |
+
image_id = self.image_files[idx].split('/')[-1].split('.')[0]
|
| 123 |
+
|
| 124 |
+
# Still need the entire path to open the image
|
| 125 |
+
image = Image.open(self.image_files[idx]).convert('RGB')
|
| 126 |
+
|
| 127 |
+
if self.transform: # Apply transform if it exists
|
| 128 |
+
image = self.transform(image)
|
| 129 |
+
|
| 130 |
+
diagnosis = self.metadata.filter(pl.col("image_name") == image_id).select("diagnosis").item()
|
| 131 |
+
|
| 132 |
+
label = torch.tensor(self.diagnostic_mapping[diagnosis], dtype=torch.int16)
|
| 133 |
+
|
| 134 |
+
return image, label
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
transform = transforms.Compose([
|
| 138 |
+
transforms.ToTensor(),
|
| 139 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # Image net mean and std
|
| 140 |
+
transforms.Resize((224, 224)), # Dimensions for Efficient Net v2
|
| 141 |
+
])
|
| 142 |
+
|
| 143 |
+
ph_2_images = "/content/data/ph2_data/images"
|
| 144 |
+
ph_2_metadata = "/content/data/ph2_data/ph_2_dataset.csv"
|
| 145 |
+
|
| 146 |
+
ex_dataset = PH2Dataset(ph_2_images, ph_2_metadata, transform)
|
| 147 |
+
|
| 148 |
+
ex_loader = DataLoader(ex_dataset, batch_size=64, shuffle=False)
|
| 149 |
+
|
| 150 |
+
for (images, labels) in test_loader:
|
| 151 |
+
images = images.to(device)
|
| 152 |
+
labels = labels.to(device)
|
| 153 |
+
output = model(images)
|
| 154 |
+
|
| 155 |
+
y_pred_prob = torch.sigmoid(output).cpu().numpy().ravel()
|
| 156 |
+
y_pred = np.where(y_pred_prob < 0.5, 0, 1)
|
| 157 |
+
|
| 158 |
+
return y_pred
|
| 159 |
+
|
| 160 |
+
```
|
| 161 |
+
|
| 162 |
+
## Training and evaluation data
|
| 163 |
+
|
| 164 |
+
This model was trained with the [ISIC 2024 challenge](https://www.kaggle.com/competitions/isic-2024-challenge) and [ISIC 2024 synthetic](https://www.kaggle.com/datasets/ilya9711nov/isic-2024-synthetic) datasets.
|
| 165 |
+
|
| 166 |
+
For the ISIC 2024 Challenge data, an 80-20 train test split was applied, and the test split was used to evaluate the model.
|
| 167 |
+
|
| 168 |
+
## Training Procedure
|
| 169 |
+
|
| 170 |
+
### Training hyperparameters
|
| 171 |
+
- learning_rate: 1e-4
|
| 172 |
+
- train_batch_size: 64
|
| 173 |
+
- eval_batch_size: 64
|
| 174 |
+
- seed: 42
|
| 175 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with weight decay=1e-2 and optimizer_args=No additional optimizer arguments
|
| 176 |
+
- num_epochs: 1
|
| 177 |
+
|
| 178 |
+
### Training results
|
| 179 |
+
|
| 180 |
+
| Training Loss | Epoch | Step |
|
| 181 |
+
|---------------|-------|------|
|
| 182 |
+
| 0.5027 | 1 | 100 |
|
| 183 |
+
| 0.5672 | 1 | 200 |
|
| 184 |
+
| 0.5373 | 1 | 300 |
|
| 185 |
+
| 0.4693 | 1 | 400 |
|
| 186 |
+
| 5.3829 | 1 | 500 |
|
| 187 |
+
| 0.4872 | 1 | 600 |
|
| 188 |
+
| 0.4717 | 1 | 700 |
|
| 189 |
+
| 0.4550 | 1 | 800 |
|
| 190 |
+
| 0.4185 | 1 | 900 |
|
| 191 |
+
| 0.4142 | 1 | 1000 |
|
| 192 |
+
| 0.3570 | 1 | 1100 |
|
| 193 |
+
| 0.3877 | 1 | 1200 |
|
| 194 |
+
| 0.4282 | 1 | 1300 |
|
| 195 |
+
| 8.8676 | 1 | 1400 |
|
| 196 |
+
| 0.3732 | 1 | 1500 |
|
| 197 |
+
| 0.3522 | 1 | 1600 |
|
| 198 |
+
| 0.3065 | 1 | 1700 |
|
| 199 |
+
| 0.3732 | 1 | 1800 |
|
| 200 |
+
| 0.3965 | 1 | 1900 |
|
| 201 |
+
| 0.4727 | 1 | 2000 |
|
| 202 |
+
| 0.3407 | 1 | 2100 |
|
| 203 |
+
| 0.3421 | 1 | 2200 |
|
| 204 |
+
| 0.3847 | 1 | 2300 |
|
| 205 |
+
| 0.3911 | 1 | 2400 |
|
| 206 |
+
| 0.4006 | 1 | 2500 |
|
| 207 |
+
| 0.2836 | 1 | 2600 |
|
| 208 |
+
| 0.3968 | 1 | 2700 |
|
| 209 |
+
| 0.3796 | 1 | 2800 |
|
| 210 |
+
| 0.3317 | 1 | 2900 |
|
| 211 |
+
| 0.2762 | 1 | 3000 |
|
| 212 |
+
| 0.3027 | 1 | 3100 |
|
| 213 |
+
| 0.3002 | 1 | 3200 |
|
| 214 |
+
| 0.3672 | 1 | 3300 |
|
| 215 |
+
| 0.2660 | 1 | 3400 |
|
| 216 |
+
| 0.3145 | 1 | 3500 |
|
| 217 |
+
| 0.4098 | 1 | 3600 |
|
| 218 |
+
| 0.3156 | 1 | 3700 |
|
| 219 |
+
| 0.2762 | 1 | 3800 |
|
| 220 |
+
| 0.2557 | 1 | 3900 |
|
| 221 |
+
| 0.3204 | 1 | 4000 |
|
| 222 |
+
| 0.3097 | 1 | 4100 |
|
| 223 |
+
| 0.2790 | 1 | 4200 |
|
| 224 |
+
| 0.3395 | 1 | 4300 |
|
| 225 |
+
| 0.2888 | 1 | 4400 |
|
| 226 |
+
| 0.3002 | 1 | 4500 |
|
| 227 |
+
| 0.3388 | 1 | 4600 |
|
| 228 |
+
| 0.3744 | 1 | 4700 |
|
| 229 |
+
| 0.3143 | 1 | 4800 |
|
| 230 |
+
| 0.3501 | 1 | 4900 |
|
| 231 |
+
| 0.2923 | 1 | 5000 |
|
| 232 |
+
| 0.3152 | 1 | 5100 |
|
| 233 |
+
| 0.3380 | 1 | 5200 |
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
### Framework versions
|
| 237 |
+
|
| 238 |
+
- Pytorch 2.9.0+cu126
|
| 239 |
+
- torchvision: 0.24.0+cu126
|
| 240 |
+
- timm: 1.0.22
|
| 241 |
+
- numpy: 2.0.2
|
| 242 |
+
- safetensors: 0.7.0
|