ayjays132 commited on
Commit
2b76866
·
verified ·
1 Parent(s): 0a1a29f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +351 -3
README.md CHANGED
@@ -1,3 +1,351 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ activation_function: gelu
3
+ architectures:
4
+ - DynamicNeuralNetwork
5
+ attn_pdrop: 0.1
6
+ bos_token_id: 50256
7
+ embd_pdrop: 0.1
8
+ eos_token_id: 50256
9
+ initializer_range: 0.02
10
+ layer_norm_epsilon: 1e-5
11
+ model_type: phillnet1
12
+ n_ctx: 512
13
+ n_embd: 1024
14
+ n_experts: 16
15
+ n_layer: 1
16
+ n_positions: 512
17
+ n_special: 0
18
+ predict_special_tokens: true
19
+ task_specific_params:
20
+ conversational:
21
+ max_length: 512
22
+ min_length: 20
23
+ length_penalty: 1.5
24
+ num_beams: 5
25
+ early_stopping: true
26
+ no_repeat_ngram_size: 3
27
+ temperature: 0.7
28
+ top_k: 50
29
+ top_p: 0.9
30
+ license: apache-2.0
31
+ datasets:
32
+ - ayjays132/Sprout-AGI
33
+ language:
34
+ - en
35
+ tags:
36
+ - conversational
37
+ - dynamic
38
+ - adaptive
39
+ metrics:
40
+ - perplexity
41
+ - accuracy
42
+ custom_params:
43
+ adaptation_rate: 0.01
44
+ complexity_metric: null
45
+ growth_improvement_threshold: 0.01
46
+ hidden_dim: 1024
47
+ initial_neuron_count: 4096
48
+ innovative_growth_net:
49
+ adaptation_rate: 0.01
50
+ complexity_metric: null
51
+ initial_capacity: 4096
52
+ input_size: 2048
53
+ input_dimension: 1024
54
+ low_stability_threshold: 0.01
55
+ max_complexity: 50000
56
+ max_neurons: 4096
57
+ max_sequence_length: 512
58
+ min_epochs_before_growth: 5
59
+ model_filename: pytorch_model.bin
60
+ num_embeddings: 50280
61
+ pruning_improvement_threshold: 0.005
62
+ stability_threshold: 0.02
63
+ start_token_index: 2
64
+ max_input_length: 512
65
+ max_total_tokens: 515
66
+ max_concurrent_requests: 128
67
+ max_best_of: 2
68
+ max_stop_sequences: 4
69
+ max_top_n_tokens: 5
70
+ waiting_served_ratio: 1.2
71
+ max_batch_prefill_tokens: 512
72
+ max_waiting_tokens: 200
73
+ ---
74
+
75
+ <style>
76
+ /* General Styles */
77
+ @import url('https://fonts.googleapis.com/css2?family=Montserrat:wght@400;600;800&display=swap');
78
+
79
+ body {
80
+ font-family: 'Montserrat', sans-serif;
81
+ background-color: #121212;
82
+ margin: 0;
83
+ padding: 20px;
84
+ line-height: 1.6;
85
+ color: #e0e0e0;
86
+ display: flex;
87
+ flex-direction: column;
88
+ align-items: center;
89
+ justify-content: center;
90
+ min-height: 100vh;
91
+ border-radius: 10px;
92
+ background: rgba(255, 255, 255, 0.05);
93
+ }
94
+
95
+ .container {
96
+ max-width: 1200px;
97
+ margin: 0 auto;
98
+ background: linear-gradient(145deg, rgba(20, 35, 55, 0.95), rgba(15, 25, 45, 0.9), rgba(10, 20, 40, 0.85));
99
+ padding: 60px;
100
+ border-radius: 35px;
101
+ box-shadow: 0 25px 70px rgba(0, 0, 0, 0.8), inset 0 0 25px rgba(255, 255, 255, 0.1);
102
+ position: relative;
103
+ overflow: hidden;
104
+ border: 2px solid rgba(100, 200, 255, 0.2);
105
+ }
106
+ .container::before {
107
+ content: '';
108
+ position: absolute;
109
+ top: -60%;
110
+ left: -60%;
111
+ width: 220%;
112
+ height: 220%;
113
+ background: radial-gradient(circle, rgba(255, 255, 255, 0.2), transparent);
114
+ animation: pulse 14s infinite;
115
+ pointer-events: none;
116
+ }
117
+ @keyframes pulse {
118
+ 0% { transform: scale(1); }
119
+ 50% { transform: scale(1.2); }
120
+ 100% { transform: scale(1); }
121
+ }
122
+ .section {
123
+ margin-bottom: 70px;
124
+ position: relative;
125
+ }
126
+ .section:hover {
127
+ transform: translateY(-7px);
128
+ transition: all 0.5s ease-in-out;
129
+ }
130
+ .detail {
131
+ padding: 25px;
132
+ margin-bottom: 25px;
133
+ border: 1px solid rgba(120, 160, 220, 0.3);
134
+ border-radius: 20px;
135
+ background: linear-gradient(145deg, rgba(255, 255, 255, 0.1), rgba(100, 140, 200, 0.2));
136
+ box-shadow: 0 15px 35px rgba(0, 0, 0, 0.5), inset 0 0 15px rgba(255, 255, 255, 0.2);
137
+ transition: all 0.4s ease;
138
+ }
139
+ .detail:hover {
140
+ background: linear-gradient(145deg, rgba(255, 255, 255, 0.15), rgba(140, 180, 240, 0.25));
141
+ transform: translateY(-7px);
142
+ box-shadow: 0 20px 50px rgba(0, 0, 0, 0.7), inset 0 0 20px rgba(255, 255, 255, 0.25);
143
+ }
144
+ .detail-icon {
145
+ font-size: 1.8em;
146
+ color: #63d2ff;
147
+ margin-right: 20px;
148
+ }
149
+ .detail:hover .detail-icon {
150
+ color: #a2f4ff;
151
+ transform: scale(1.2);
152
+ }
153
+ ul {
154
+ list-style: none;
155
+ padding: 0;
156
+ }
157
+ ul li {
158
+ margin: 20px 0;
159
+ padding: 20px;
160
+ background: linear-gradient(145deg, rgba(255, 255, 255, 0.1), rgba(60, 100, 140, 0.25));
161
+ border-radius: 15px;
162
+ box-shadow: inset 0 0 15px rgba(0, 0, 0, 0.3), 0 8px 25px rgba(0, 0, 0, 0.6);
163
+ transition: all 0.4s ease;
164
+ }
165
+ ul li:hover {
166
+ background: linear-gradient(145deg, rgba(255, 255, 255, 0.15), rgba(80, 120, 160, 0.3));
167
+ transform: translateX(10px);
168
+ box-shadow: 0 15px 30px rgba(0, 0, 0, 0.5), inset 0 0 20px rgba(255, 255, 255, 0.2);
169
+ }
170
+ a {
171
+ color: #63d2ff;
172
+ text-decoration: none;
173
+ font-weight: bold;
174
+ transition: color 0.3s ease, text-shadow 0.3s ease;
175
+ }
176
+ a:hover {
177
+ color: #a2f4ff;
178
+ text-shadow: 0 0 12px rgba(255, 255, 255, 0.9), 0 0 18px rgba(100, 200, 255, 0.6);
179
+ }
180
+ h1, h2, h3 {
181
+ text-transform: uppercase;
182
+ color: #e8f0ff;
183
+ text-shadow: 5px 5px 15px rgba(0, 0, 0, 0.9), 0 0 20px rgba(255, 255, 255, 0.6);
184
+ font-weight: 700;
185
+ }
186
+ </style>
187
+
188
+ <div class="container">
189
+ <h1 class="section-title">Welcome to ayjays132/PhillNet-1!</h1>
190
+
191
+ <div class="section">
192
+ <div class="section-header">
193
+ <h2 class="section-title">🎭 Distinctive Elements</h2>
194
+ </div>
195
+ <div class="section-content">
196
+ <div class="detail">
197
+ <div class="detail-icon">💬</div>
198
+ <div class="detail-text">Engaging Conversations: PhillNet 1 generates fluid, context-rich dialogue, continually evolving its internal state with every exchange.</div>
199
+ </div>
200
+ <div class="detail">
201
+ <div class="detail-icon">🧠</div>
202
+ <div class="detail-text">Dynamic Cognition: With its integrated LSTM core, MoE routing, and self-regulated learning, this model adapts in real-time to complex queries.</div>
203
+ </div>
204
+ <div class="detail">
205
+ <div class="detail-icon">⚡</div>
206
+ <div class="detail-text">Neuroevolution in Action: Utilizing an Innovative Growth Network, PhillNet 1 dynamically restructures its neurons to optimize performance.</div>
207
+ </div>
208
+ </div>
209
+ </div>
210
+
211
+ <div class="section">
212
+ <div class="section-header">
213
+ <h2 class="section-title">🛠️ Architectural Marvels</h2>
214
+ </div>
215
+ <div class="section-content">
216
+ <div class="detail">
217
+ <div class="detail-icon">🏛️</div>
218
+ <div class="detail-text">Dynamic Neural Core: Based on our DynamicNeuralNetwork class, PhillNet 1 features a 1024-dimensional embedding and hidden state, processing up to 512 tokens per sequence.</div>
219
+ </div>
220
+ <div class="detail">
221
+ <div class="detail-icon">🌀</div>
222
+ <div class="detail-text">Expert Routing: A Mixture-of-Experts layer with 16 experts and top-4 routing ensures specialized handling of varied content, driven by semantic and contextual cues.</div>
223
+ </div>
224
+ <div class="detail">
225
+ <div class="detail-icon">🎶</div>
226
+ <div class="detail-text">Self-Reflection & Growth: A dedicated Self-Regulated Learning module refines outputs before prediction, while an Innovative Growth Net continually adapts the network’s structure.</div>
227
+ </div>
228
+ </div>
229
+ </div>
230
+
231
+ <div class="section">
232
+ <div class="section-header">
233
+ <h2 class="section-title">📘 Core Training Dataset</h2>
234
+ </div>
235
+ <div class="section-content">
236
+ <p>Introducing the <strong>Core Reasoning Prime Dataset</strong>—a curated collection designed to train PhillNet 1 for advanced natural language understanding, ethical reasoning, and adaptive dialogue generation. Key features include:</p>
237
+ <ul>
238
+ <li><strong>Input:</strong> Rich, detailed prompts that encourage creative and logical responses.</li>
239
+ <li><strong>Context:</strong> Multi-modal context data to enhance memory and recall capabilities.</li>
240
+ <li><strong>Output:</strong> Expert-level responses refined by self-regulation and neuroevolution.</li>
241
+ <li><strong>Reasoning Type:</strong> Structured approaches that foster dynamic, adaptive intelligence.</li>
242
+ </ul>
243
+ <p>This dataset is pivotal in pushing PhillNet 1 beyond static language models, fostering continuous self-improvement and contextual awareness.</p>
244
+ </div>
245
+ </div>
246
+
247
+ <div class="section">
248
+ <div class="section-header">
249
+ <h2 class="section-title">🌐 Model Configurations</h2>
250
+ </div>
251
+ <div class="section-content">
252
+ <div class="detail">
253
+ <div class="detail-icon">📜</div>
254
+ <div class="detail-text">Activation & Initialization: Utilizing GELU activation with an initializer range of 0.02 and a layer norm epsilon of 1e-5 for stable training.</div>
255
+ </div>
256
+ <div class="detail">
257
+ <div class="detail-icon">🕰️</div>
258
+ <div class="detail-text">Adaptation Dynamics: An adaptation rate of 0.01 and a maximum neuron capacity of 4096 drive real-time neuroevolution.</div>
259
+ </div>
260
+ <div class="detail">
261
+ <div class="detail-icon">🌍</div>
262
+ <div class="detail-text">Sequence & Memory: Processes sequences of up to 512 tokens with a 1024-dimensional embedding space, integrating multi-level memory modules for contextual awareness.</div>
263
+ </div>
264
+ </div>
265
+ </div>
266
+
267
+ <div class="section">
268
+ <div class="section-header">
269
+ <h2 class="section-title">🔧 Hyperparameters Overview</h2>
270
+ </div>
271
+ <div class="section-content">
272
+ <p>Below is a concise overview of the key hyperparameters used to train PhillNet 1:</p>
273
+ <ul>
274
+ <li><strong>Max Neurons:</strong> 4096</li>
275
+ <li><strong>Embedding Dimension:</strong> 1024</li>
276
+ <li><strong>Hidden Dimension:</strong> 1024</li>
277
+ <li><strong>Initial Neuron Count:</strong> 4096</li>
278
+ <li><strong>Adaptation Rate:</strong> 0.01</li>
279
+ <li><strong>MoE Experts:</strong> 16 (Top-4 selected per token)</li>
280
+ <li><strong>Intermediate FFN Size:</strong> 2048</li>
281
+ <li><strong>Max Sequence Length:</strong> 512 tokens</li>
282
+ <li><strong>Vocabulary Size:</strong> 50280</li>
283
+ </ul>
284
+ </div>
285
+ </div>
286
+
287
+ <div class="section">
288
+ <div class="section-header">
289
+ <h2 class="section-title">🔗 Seamless Integration with Hugging Face</h2>
290
+ </div>
291
+ <div class="section-content">
292
+ <img src="https://huggingface.co/ayjays132/phillnet/resolve/main/Phillnet.png?download=true" alt="PhillNet 1 Model" style="width:100%; border-radius: 15px;">
293
+ <p>Load PhillNet 1 easily with the following script:</p>
294
+ <pre>
295
+ from transformers import AutoTokenizer, AutoModelForCausalLM
296
+
297
+ tokenizer = AutoTokenizer.from_pretrained("ayjays132/PhillNet-1")
298
+ tokenizer.add_special_tokens({'pad_token': '[PAD]'})
299
+
300
+ model = AutoModelForCausalLM.from_pretrained("ayjays132/PhillNet-1")
301
+
302
+ # Example conversation
303
+ conversation_history = [
304
+ "Hello, how are you?",
305
+ "I'm doing well, thank you! How about you?",
306
+ "I'm good too. What's new with you?",
307
+ "Working on innovative neuroevolution techniques—what about you?"
308
+ ]
309
+
310
+ conversation_text = " ".join(conversation_history)
311
+ input_ids = tokenizer.encode(conversation_text, return_tensors="pt", padding=True, truncation=True)
312
+ output_ids = model.generate(input_ids, max_length=150, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
313
+ generated_response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
314
+ print("Generated Response:", generated_response)
315
+ </pre>
316
+ </div>
317
+ </div>
318
+
319
+ <div class="section">
320
+ <div class="section-header">
321
+ <h2 class="section-title">💡 Experience the Magic</h2>
322
+ </div>
323
+ <div class="section-content">
324
+ <ul>
325
+ <li><strong>Adaptive Learning:</strong> PhillNet 1 continuously refines its internal state via self-regulated learning and neuroevolution.</li>
326
+ <li><strong>Innovative Growth:</strong> Real-time architecture adaptation enables dynamic neuron specialization.</li>
327
+ <li><strong>Contextual Awareness:</strong> Advanced memory modules integrate short-, episodic, and conceptual memories for rich contextual understanding.</li>
328
+ </ul>
329
+ <p>Welcome to a new era of AI—where every parameter evolves, every neuron thinks, and every token is a step toward true general intelligence.</p>
330
+ </div>
331
+ </div>
332
+
333
+ <div class="section">
334
+ <div class="section-header">
335
+ <h2 class="section-title">📜 Usage and License</h2>
336
+ </div>
337
+ <div class="section-content">
338
+ <img src="https://huggingface.co/ayjays132/phillnet/resolve/main/usage.png?download=true" alt="Usage Example" style="width:100%; border-radius: 15px;">
339
+ <p>If you use PhillNet 1, please provide credit to the original author, Phillip Holland, and review the LICENSE.md for usage guidelines. Your acknowledgement helps foster ethical and responsible AI development.</p>
340
+ </div>
341
+ </div>
342
+
343
+ <div class="section">
344
+ <div class="section-header">
345
+ <h2 class="section-title">🚀 Final Thoughts</h2>
346
+ </div>
347
+ <div class="section-content">
348
+ <p>PhillNet 1 is not merely a model—it's a dynamic, self-evolving neural organism. From its adaptive MoE routing and self-regulated introspection to its groundbreaking neuroevolution, every aspect is designed for continuous improvement and rich contextual understanding. Join us on this journey as we push the boundaries of what a living AI can achieve.</p>
349
+ </div>
350
+ </div>
351
+ </div>