Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,351 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
activation_function: gelu
|
| 3 |
+
architectures:
|
| 4 |
+
- DynamicNeuralNetwork
|
| 5 |
+
attn_pdrop: 0.1
|
| 6 |
+
bos_token_id: 50256
|
| 7 |
+
embd_pdrop: 0.1
|
| 8 |
+
eos_token_id: 50256
|
| 9 |
+
initializer_range: 0.02
|
| 10 |
+
layer_norm_epsilon: 1e-5
|
| 11 |
+
model_type: phillnet1
|
| 12 |
+
n_ctx: 512
|
| 13 |
+
n_embd: 1024
|
| 14 |
+
n_experts: 16
|
| 15 |
+
n_layer: 1
|
| 16 |
+
n_positions: 512
|
| 17 |
+
n_special: 0
|
| 18 |
+
predict_special_tokens: true
|
| 19 |
+
task_specific_params:
|
| 20 |
+
conversational:
|
| 21 |
+
max_length: 512
|
| 22 |
+
min_length: 20
|
| 23 |
+
length_penalty: 1.5
|
| 24 |
+
num_beams: 5
|
| 25 |
+
early_stopping: true
|
| 26 |
+
no_repeat_ngram_size: 3
|
| 27 |
+
temperature: 0.7
|
| 28 |
+
top_k: 50
|
| 29 |
+
top_p: 0.9
|
| 30 |
+
license: apache-2.0
|
| 31 |
+
datasets:
|
| 32 |
+
- ayjays132/Sprout-AGI
|
| 33 |
+
language:
|
| 34 |
+
- en
|
| 35 |
+
tags:
|
| 36 |
+
- conversational
|
| 37 |
+
- dynamic
|
| 38 |
+
- adaptive
|
| 39 |
+
metrics:
|
| 40 |
+
- perplexity
|
| 41 |
+
- accuracy
|
| 42 |
+
custom_params:
|
| 43 |
+
adaptation_rate: 0.01
|
| 44 |
+
complexity_metric: null
|
| 45 |
+
growth_improvement_threshold: 0.01
|
| 46 |
+
hidden_dim: 1024
|
| 47 |
+
initial_neuron_count: 4096
|
| 48 |
+
innovative_growth_net:
|
| 49 |
+
adaptation_rate: 0.01
|
| 50 |
+
complexity_metric: null
|
| 51 |
+
initial_capacity: 4096
|
| 52 |
+
input_size: 2048
|
| 53 |
+
input_dimension: 1024
|
| 54 |
+
low_stability_threshold: 0.01
|
| 55 |
+
max_complexity: 50000
|
| 56 |
+
max_neurons: 4096
|
| 57 |
+
max_sequence_length: 512
|
| 58 |
+
min_epochs_before_growth: 5
|
| 59 |
+
model_filename: pytorch_model.bin
|
| 60 |
+
num_embeddings: 50280
|
| 61 |
+
pruning_improvement_threshold: 0.005
|
| 62 |
+
stability_threshold: 0.02
|
| 63 |
+
start_token_index: 2
|
| 64 |
+
max_input_length: 512
|
| 65 |
+
max_total_tokens: 515
|
| 66 |
+
max_concurrent_requests: 128
|
| 67 |
+
max_best_of: 2
|
| 68 |
+
max_stop_sequences: 4
|
| 69 |
+
max_top_n_tokens: 5
|
| 70 |
+
waiting_served_ratio: 1.2
|
| 71 |
+
max_batch_prefill_tokens: 512
|
| 72 |
+
max_waiting_tokens: 200
|
| 73 |
+
---
|
| 74 |
+
|
| 75 |
+
<style>
|
| 76 |
+
/* General Styles */
|
| 77 |
+
@import url('https://fonts.googleapis.com/css2?family=Montserrat:wght@400;600;800&display=swap');
|
| 78 |
+
|
| 79 |
+
body {
|
| 80 |
+
font-family: 'Montserrat', sans-serif;
|
| 81 |
+
background-color: #121212;
|
| 82 |
+
margin: 0;
|
| 83 |
+
padding: 20px;
|
| 84 |
+
line-height: 1.6;
|
| 85 |
+
color: #e0e0e0;
|
| 86 |
+
display: flex;
|
| 87 |
+
flex-direction: column;
|
| 88 |
+
align-items: center;
|
| 89 |
+
justify-content: center;
|
| 90 |
+
min-height: 100vh;
|
| 91 |
+
border-radius: 10px;
|
| 92 |
+
background: rgba(255, 255, 255, 0.05);
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
.container {
|
| 96 |
+
max-width: 1200px;
|
| 97 |
+
margin: 0 auto;
|
| 98 |
+
background: linear-gradient(145deg, rgba(20, 35, 55, 0.95), rgba(15, 25, 45, 0.9), rgba(10, 20, 40, 0.85));
|
| 99 |
+
padding: 60px;
|
| 100 |
+
border-radius: 35px;
|
| 101 |
+
box-shadow: 0 25px 70px rgba(0, 0, 0, 0.8), inset 0 0 25px rgba(255, 255, 255, 0.1);
|
| 102 |
+
position: relative;
|
| 103 |
+
overflow: hidden;
|
| 104 |
+
border: 2px solid rgba(100, 200, 255, 0.2);
|
| 105 |
+
}
|
| 106 |
+
.container::before {
|
| 107 |
+
content: '';
|
| 108 |
+
position: absolute;
|
| 109 |
+
top: -60%;
|
| 110 |
+
left: -60%;
|
| 111 |
+
width: 220%;
|
| 112 |
+
height: 220%;
|
| 113 |
+
background: radial-gradient(circle, rgba(255, 255, 255, 0.2), transparent);
|
| 114 |
+
animation: pulse 14s infinite;
|
| 115 |
+
pointer-events: none;
|
| 116 |
+
}
|
| 117 |
+
@keyframes pulse {
|
| 118 |
+
0% { transform: scale(1); }
|
| 119 |
+
50% { transform: scale(1.2); }
|
| 120 |
+
100% { transform: scale(1); }
|
| 121 |
+
}
|
| 122 |
+
.section {
|
| 123 |
+
margin-bottom: 70px;
|
| 124 |
+
position: relative;
|
| 125 |
+
}
|
| 126 |
+
.section:hover {
|
| 127 |
+
transform: translateY(-7px);
|
| 128 |
+
transition: all 0.5s ease-in-out;
|
| 129 |
+
}
|
| 130 |
+
.detail {
|
| 131 |
+
padding: 25px;
|
| 132 |
+
margin-bottom: 25px;
|
| 133 |
+
border: 1px solid rgba(120, 160, 220, 0.3);
|
| 134 |
+
border-radius: 20px;
|
| 135 |
+
background: linear-gradient(145deg, rgba(255, 255, 255, 0.1), rgba(100, 140, 200, 0.2));
|
| 136 |
+
box-shadow: 0 15px 35px rgba(0, 0, 0, 0.5), inset 0 0 15px rgba(255, 255, 255, 0.2);
|
| 137 |
+
transition: all 0.4s ease;
|
| 138 |
+
}
|
| 139 |
+
.detail:hover {
|
| 140 |
+
background: linear-gradient(145deg, rgba(255, 255, 255, 0.15), rgba(140, 180, 240, 0.25));
|
| 141 |
+
transform: translateY(-7px);
|
| 142 |
+
box-shadow: 0 20px 50px rgba(0, 0, 0, 0.7), inset 0 0 20px rgba(255, 255, 255, 0.25);
|
| 143 |
+
}
|
| 144 |
+
.detail-icon {
|
| 145 |
+
font-size: 1.8em;
|
| 146 |
+
color: #63d2ff;
|
| 147 |
+
margin-right: 20px;
|
| 148 |
+
}
|
| 149 |
+
.detail:hover .detail-icon {
|
| 150 |
+
color: #a2f4ff;
|
| 151 |
+
transform: scale(1.2);
|
| 152 |
+
}
|
| 153 |
+
ul {
|
| 154 |
+
list-style: none;
|
| 155 |
+
padding: 0;
|
| 156 |
+
}
|
| 157 |
+
ul li {
|
| 158 |
+
margin: 20px 0;
|
| 159 |
+
padding: 20px;
|
| 160 |
+
background: linear-gradient(145deg, rgba(255, 255, 255, 0.1), rgba(60, 100, 140, 0.25));
|
| 161 |
+
border-radius: 15px;
|
| 162 |
+
box-shadow: inset 0 0 15px rgba(0, 0, 0, 0.3), 0 8px 25px rgba(0, 0, 0, 0.6);
|
| 163 |
+
transition: all 0.4s ease;
|
| 164 |
+
}
|
| 165 |
+
ul li:hover {
|
| 166 |
+
background: linear-gradient(145deg, rgba(255, 255, 255, 0.15), rgba(80, 120, 160, 0.3));
|
| 167 |
+
transform: translateX(10px);
|
| 168 |
+
box-shadow: 0 15px 30px rgba(0, 0, 0, 0.5), inset 0 0 20px rgba(255, 255, 255, 0.2);
|
| 169 |
+
}
|
| 170 |
+
a {
|
| 171 |
+
color: #63d2ff;
|
| 172 |
+
text-decoration: none;
|
| 173 |
+
font-weight: bold;
|
| 174 |
+
transition: color 0.3s ease, text-shadow 0.3s ease;
|
| 175 |
+
}
|
| 176 |
+
a:hover {
|
| 177 |
+
color: #a2f4ff;
|
| 178 |
+
text-shadow: 0 0 12px rgba(255, 255, 255, 0.9), 0 0 18px rgba(100, 200, 255, 0.6);
|
| 179 |
+
}
|
| 180 |
+
h1, h2, h3 {
|
| 181 |
+
text-transform: uppercase;
|
| 182 |
+
color: #e8f0ff;
|
| 183 |
+
text-shadow: 5px 5px 15px rgba(0, 0, 0, 0.9), 0 0 20px rgba(255, 255, 255, 0.6);
|
| 184 |
+
font-weight: 700;
|
| 185 |
+
}
|
| 186 |
+
</style>
|
| 187 |
+
|
| 188 |
+
<div class="container">
|
| 189 |
+
<h1 class="section-title">Welcome to ayjays132/PhillNet-1!</h1>
|
| 190 |
+
|
| 191 |
+
<div class="section">
|
| 192 |
+
<div class="section-header">
|
| 193 |
+
<h2 class="section-title">🎭 Distinctive Elements</h2>
|
| 194 |
+
</div>
|
| 195 |
+
<div class="section-content">
|
| 196 |
+
<div class="detail">
|
| 197 |
+
<div class="detail-icon">💬</div>
|
| 198 |
+
<div class="detail-text">Engaging Conversations: PhillNet 1 generates fluid, context-rich dialogue, continually evolving its internal state with every exchange.</div>
|
| 199 |
+
</div>
|
| 200 |
+
<div class="detail">
|
| 201 |
+
<div class="detail-icon">🧠</div>
|
| 202 |
+
<div class="detail-text">Dynamic Cognition: With its integrated LSTM core, MoE routing, and self-regulated learning, this model adapts in real-time to complex queries.</div>
|
| 203 |
+
</div>
|
| 204 |
+
<div class="detail">
|
| 205 |
+
<div class="detail-icon">⚡</div>
|
| 206 |
+
<div class="detail-text">Neuroevolution in Action: Utilizing an Innovative Growth Network, PhillNet 1 dynamically restructures its neurons to optimize performance.</div>
|
| 207 |
+
</div>
|
| 208 |
+
</div>
|
| 209 |
+
</div>
|
| 210 |
+
|
| 211 |
+
<div class="section">
|
| 212 |
+
<div class="section-header">
|
| 213 |
+
<h2 class="section-title">🛠️ Architectural Marvels</h2>
|
| 214 |
+
</div>
|
| 215 |
+
<div class="section-content">
|
| 216 |
+
<div class="detail">
|
| 217 |
+
<div class="detail-icon">🏛️</div>
|
| 218 |
+
<div class="detail-text">Dynamic Neural Core: Based on our DynamicNeuralNetwork class, PhillNet 1 features a 1024-dimensional embedding and hidden state, processing up to 512 tokens per sequence.</div>
|
| 219 |
+
</div>
|
| 220 |
+
<div class="detail">
|
| 221 |
+
<div class="detail-icon">🌀</div>
|
| 222 |
+
<div class="detail-text">Expert Routing: A Mixture-of-Experts layer with 16 experts and top-4 routing ensures specialized handling of varied content, driven by semantic and contextual cues.</div>
|
| 223 |
+
</div>
|
| 224 |
+
<div class="detail">
|
| 225 |
+
<div class="detail-icon">🎶</div>
|
| 226 |
+
<div class="detail-text">Self-Reflection & Growth: A dedicated Self-Regulated Learning module refines outputs before prediction, while an Innovative Growth Net continually adapts the network’s structure.</div>
|
| 227 |
+
</div>
|
| 228 |
+
</div>
|
| 229 |
+
</div>
|
| 230 |
+
|
| 231 |
+
<div class="section">
|
| 232 |
+
<div class="section-header">
|
| 233 |
+
<h2 class="section-title">📘 Core Training Dataset</h2>
|
| 234 |
+
</div>
|
| 235 |
+
<div class="section-content">
|
| 236 |
+
<p>Introducing the <strong>Core Reasoning Prime Dataset</strong>—a curated collection designed to train PhillNet 1 for advanced natural language understanding, ethical reasoning, and adaptive dialogue generation. Key features include:</p>
|
| 237 |
+
<ul>
|
| 238 |
+
<li><strong>Input:</strong> Rich, detailed prompts that encourage creative and logical responses.</li>
|
| 239 |
+
<li><strong>Context:</strong> Multi-modal context data to enhance memory and recall capabilities.</li>
|
| 240 |
+
<li><strong>Output:</strong> Expert-level responses refined by self-regulation and neuroevolution.</li>
|
| 241 |
+
<li><strong>Reasoning Type:</strong> Structured approaches that foster dynamic, adaptive intelligence.</li>
|
| 242 |
+
</ul>
|
| 243 |
+
<p>This dataset is pivotal in pushing PhillNet 1 beyond static language models, fostering continuous self-improvement and contextual awareness.</p>
|
| 244 |
+
</div>
|
| 245 |
+
</div>
|
| 246 |
+
|
| 247 |
+
<div class="section">
|
| 248 |
+
<div class="section-header">
|
| 249 |
+
<h2 class="section-title">🌐 Model Configurations</h2>
|
| 250 |
+
</div>
|
| 251 |
+
<div class="section-content">
|
| 252 |
+
<div class="detail">
|
| 253 |
+
<div class="detail-icon">📜</div>
|
| 254 |
+
<div class="detail-text">Activation & Initialization: Utilizing GELU activation with an initializer range of 0.02 and a layer norm epsilon of 1e-5 for stable training.</div>
|
| 255 |
+
</div>
|
| 256 |
+
<div class="detail">
|
| 257 |
+
<div class="detail-icon">🕰️</div>
|
| 258 |
+
<div class="detail-text">Adaptation Dynamics: An adaptation rate of 0.01 and a maximum neuron capacity of 4096 drive real-time neuroevolution.</div>
|
| 259 |
+
</div>
|
| 260 |
+
<div class="detail">
|
| 261 |
+
<div class="detail-icon">🌍</div>
|
| 262 |
+
<div class="detail-text">Sequence & Memory: Processes sequences of up to 512 tokens with a 1024-dimensional embedding space, integrating multi-level memory modules for contextual awareness.</div>
|
| 263 |
+
</div>
|
| 264 |
+
</div>
|
| 265 |
+
</div>
|
| 266 |
+
|
| 267 |
+
<div class="section">
|
| 268 |
+
<div class="section-header">
|
| 269 |
+
<h2 class="section-title">🔧 Hyperparameters Overview</h2>
|
| 270 |
+
</div>
|
| 271 |
+
<div class="section-content">
|
| 272 |
+
<p>Below is a concise overview of the key hyperparameters used to train PhillNet 1:</p>
|
| 273 |
+
<ul>
|
| 274 |
+
<li><strong>Max Neurons:</strong> 4096</li>
|
| 275 |
+
<li><strong>Embedding Dimension:</strong> 1024</li>
|
| 276 |
+
<li><strong>Hidden Dimension:</strong> 1024</li>
|
| 277 |
+
<li><strong>Initial Neuron Count:</strong> 4096</li>
|
| 278 |
+
<li><strong>Adaptation Rate:</strong> 0.01</li>
|
| 279 |
+
<li><strong>MoE Experts:</strong> 16 (Top-4 selected per token)</li>
|
| 280 |
+
<li><strong>Intermediate FFN Size:</strong> 2048</li>
|
| 281 |
+
<li><strong>Max Sequence Length:</strong> 512 tokens</li>
|
| 282 |
+
<li><strong>Vocabulary Size:</strong> 50280</li>
|
| 283 |
+
</ul>
|
| 284 |
+
</div>
|
| 285 |
+
</div>
|
| 286 |
+
|
| 287 |
+
<div class="section">
|
| 288 |
+
<div class="section-header">
|
| 289 |
+
<h2 class="section-title">🔗 Seamless Integration with Hugging Face</h2>
|
| 290 |
+
</div>
|
| 291 |
+
<div class="section-content">
|
| 292 |
+
<img src="https://huggingface.co/ayjays132/phillnet/resolve/main/Phillnet.png?download=true" alt="PhillNet 1 Model" style="width:100%; border-radius: 15px;">
|
| 293 |
+
<p>Load PhillNet 1 easily with the following script:</p>
|
| 294 |
+
<pre>
|
| 295 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 296 |
+
|
| 297 |
+
tokenizer = AutoTokenizer.from_pretrained("ayjays132/PhillNet-1")
|
| 298 |
+
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
| 299 |
+
|
| 300 |
+
model = AutoModelForCausalLM.from_pretrained("ayjays132/PhillNet-1")
|
| 301 |
+
|
| 302 |
+
# Example conversation
|
| 303 |
+
conversation_history = [
|
| 304 |
+
"Hello, how are you?",
|
| 305 |
+
"I'm doing well, thank you! How about you?",
|
| 306 |
+
"I'm good too. What's new with you?",
|
| 307 |
+
"Working on innovative neuroevolution techniques—what about you?"
|
| 308 |
+
]
|
| 309 |
+
|
| 310 |
+
conversation_text = " ".join(conversation_history)
|
| 311 |
+
input_ids = tokenizer.encode(conversation_text, return_tensors="pt", padding=True, truncation=True)
|
| 312 |
+
output_ids = model.generate(input_ids, max_length=150, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
|
| 313 |
+
generated_response = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 314 |
+
print("Generated Response:", generated_response)
|
| 315 |
+
</pre>
|
| 316 |
+
</div>
|
| 317 |
+
</div>
|
| 318 |
+
|
| 319 |
+
<div class="section">
|
| 320 |
+
<div class="section-header">
|
| 321 |
+
<h2 class="section-title">💡 Experience the Magic</h2>
|
| 322 |
+
</div>
|
| 323 |
+
<div class="section-content">
|
| 324 |
+
<ul>
|
| 325 |
+
<li><strong>Adaptive Learning:</strong> PhillNet 1 continuously refines its internal state via self-regulated learning and neuroevolution.</li>
|
| 326 |
+
<li><strong>Innovative Growth:</strong> Real-time architecture adaptation enables dynamic neuron specialization.</li>
|
| 327 |
+
<li><strong>Contextual Awareness:</strong> Advanced memory modules integrate short-, episodic, and conceptual memories for rich contextual understanding.</li>
|
| 328 |
+
</ul>
|
| 329 |
+
<p>Welcome to a new era of AI—where every parameter evolves, every neuron thinks, and every token is a step toward true general intelligence.</p>
|
| 330 |
+
</div>
|
| 331 |
+
</div>
|
| 332 |
+
|
| 333 |
+
<div class="section">
|
| 334 |
+
<div class="section-header">
|
| 335 |
+
<h2 class="section-title">📜 Usage and License</h2>
|
| 336 |
+
</div>
|
| 337 |
+
<div class="section-content">
|
| 338 |
+
<img src="https://huggingface.co/ayjays132/phillnet/resolve/main/usage.png?download=true" alt="Usage Example" style="width:100%; border-radius: 15px;">
|
| 339 |
+
<p>If you use PhillNet 1, please provide credit to the original author, Phillip Holland, and review the LICENSE.md for usage guidelines. Your acknowledgement helps foster ethical and responsible AI development.</p>
|
| 340 |
+
</div>
|
| 341 |
+
</div>
|
| 342 |
+
|
| 343 |
+
<div class="section">
|
| 344 |
+
<div class="section-header">
|
| 345 |
+
<h2 class="section-title">🚀 Final Thoughts</h2>
|
| 346 |
+
</div>
|
| 347 |
+
<div class="section-content">
|
| 348 |
+
<p>PhillNet 1 is not merely a model—it's a dynamic, self-evolving neural organism. From its adaptive MoE routing and self-regulated introspection to its groundbreaking neuroevolution, every aspect is designed for continuous improvement and rich contextual understanding. Join us on this journey as we push the boundaries of what a living AI can achieve.</p>
|
| 349 |
+
</div>
|
| 350 |
+
</div>
|
| 351 |
+
</div>
|