--- library_name: transformers tags: - unsloth - trl - sft --- ### Model detail No system prompt training\ LoRA training rank 64 and alpha 128\ Tool calling support ### Usage: ``` from transformers import AutoModelForCausalLM, AutoTokenizer import torch MAX_REASONING_TOKENS = 4096 MAX_RESPONSE_TOKENS = 1024 model_name = "beyoru/ThinkAgain1.6-S2" model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_name) messages = [] def stream_output(output_text): for char in output_text: print(char, end="", flush=True) while True: prompt = input("USER: ") messages.append({"role": "user", "content": prompt}) # Generate reasoning reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True) reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device) reasoning_ids = model.generate(**reasoning_inputs, max_new_tokens=MAX_REASONING_TOKENS) reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True) messages.append({"role": "reasoning", "content": reasoning_output}) print("REASONING: ", end="") stream_output(reasoning_output) print() # Generate answer response_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) response_inputs = tokenizer(response_template, return_tensors="pt").to(model.device) response_ids = model.generate(**response_inputs, max_new_tokens=MAX_RESPONSE_TOKENS) response_output = tokenizer.decode(response_ids[0, response_inputs.input_ids.shape[1]:], skip_special_tokens=True) messages.append({"role": "assistant", "content": response_output}) print("ASSISTANT: ", end="") stream_output(response_output) print() ```