Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
datasets:
|
| 4 |
+
- ZINC-22
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
tags:
|
| 8 |
+
- molecular-generation
|
| 9 |
+
- drug-discovery
|
| 10 |
+
- llama
|
| 11 |
+
- flash-attention
|
| 12 |
+
pipeline_tag: text-generation
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# NovoMolGen
|
| 16 |
+
|
| 17 |
+
NovoMolGen is a family of molecular foundation models trained on
|
| 18 |
+
1.5 billion ZINC-22 molecules with Llama architectures and FlashAttention.
|
| 19 |
+
It achieves state-of-the-art performance on both unconstrained and
|
| 20 |
+
goal-directed molecule generation tasks.
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
## How to load
|
| 24 |
+
|
| 25 |
+
```python
|
| 26 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 27 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("chandar-lab/NovoMolGen_32M_SAFE_BPE", trust_remote_code=True)
|
| 28 |
+
>>> model = AutoModelForCausalLM.from_pretrained("chandar-lab/NovoMolGen_32M_SAFE_BPE", trust_remote_code=True)
|
| 29 |
+
```
|
| 30 |
+
|
| 31 |
+
## Quick-start (FlashAttention + bf16)
|
| 32 |
+
|
| 33 |
+
```python
|
| 34 |
+
>>> from accelerate import Accelerator
|
| 35 |
+
|
| 36 |
+
>>> acc = Accelerator(mixed_precision='bf16')
|
| 37 |
+
>>> model = acc.prepare(model)
|
| 38 |
+
|
| 39 |
+
>>> outputs = model.sample(tokenizer=tokenizer, batch_size=4)
|
| 40 |
+
>>> print(outputs['SAFE'])
|
| 41 |
+
```
|
| 42 |
+
|
| 43 |
+
## Transformers-native HF checkpoint (`revision="hf-checkpoint"`)
|
| 44 |
+
|
| 45 |
+
We also publish a Transformers-native checkpoint on the `hf-checkpoint` revision. This version loads directly with `AutoModelForCausalLM` and works out-of-the-box with `.generate(...)`.
|
| 46 |
+
|
| 47 |
+
```python
|
| 48 |
+
>>> import torch
|
| 49 |
+
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 50 |
+
|
| 51 |
+
>>> model = AutoModelForCausalLM.from_pretrained("chandar-lab/NovoMolGen_32M_SAFE_BPE", revision='hf-checkpoint', device_map='auto')
|
| 52 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("chandar-lab/NovoMolGen_32M_SAFE_BPE", revision='hf-checkpoint')
|
| 53 |
+
|
| 54 |
+
>>> input_ids = torch.tensor([[tokenizer.bos_token_id]]).expand(4, -1).contiguous().to(model.device)
|
| 55 |
+
>>> outs = model.generate(input_ids=input_ids, temperature=1.0, max_length=64, do_sample=True, pad_token_id=tokenizer.eos_token_id, top_k=1, top_p=0)
|
| 56 |
+
|
| 57 |
+
>>> molecules = [t.replace(" ", "") for t in tokenizer.batch_decode(outs, skip_special_tokens=True)]
|
| 58 |
+
['CCO[C@H](CNC(=O)N(CC(=O)OC(C)(C)C)c1cccc(Br)n1)C(F)(F)F',
|
| 59 |
+
'CCn1nnnc1CNc1ncnc(N[C@H]2CCO[C@@H](C)C2)c1C',
|
| 60 |
+
'CC(C)(O)CNC(=O)CC[C@H]1C[C@@H](NC(=O)COCC(F)F)C1',
|
| 61 |
+
'Cc1ncc(C(=O)N2C[C@H]3[C@H](CNC(=O)c4cnn[nH]4)CCC[C@H]3C2)n1C']
|
| 62 |
+
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
## Citation
|
| 66 |
+
|
| 67 |
+
```bibtex
|
| 68 |
+
@misc{chitsaz2025novomolgenrethinkingmolecularlanguage,
|
| 69 |
+
title={NovoMolGen: Rethinking Molecular Language Model Pretraining},
|
| 70 |
+
author={Kamran Chitsaz and Roshan Balaji and Quentin Fournier and Nirav Pravinbhai Bhatt and Sarath Chandar},
|
| 71 |
+
year={2025},
|
| 72 |
+
eprint={2508.13408},
|
| 73 |
+
archivePrefix={arXiv},
|
| 74 |
+
primaryClass={cs.LG},
|
| 75 |
+
url={https://arxiv.org/abs/2508.13408},
|
| 76 |
+
}
|
| 77 |
+
```
|