ch-min commited on
Commit
e92d73f
·
verified ·
1 Parent(s): 95b9ab0

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint-1250/llm/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ llm/tokenizer.json filter=lfs diff=lfs merge=lfs -text
checkpoint-1250/config.json ADDED
@@ -0,0 +1,333 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "Ubit": 100,
3
+ "_attn_implementation_autoset": true,
4
+ "_name_or_path": "/data/shared/Qwen/mydisk/output/TOP3/NVILA-Lite-2B-TOP3_SPATIAL_REASONING_80K-20251107_104236/tmp-checkpoint-1250",
5
+ "architectures": [
6
+ "LlavaLlamaModel"
7
+ ],
8
+ "babit": "E5M2",
9
+ "bobit": "E5M2",
10
+ "bwbit": "E5M2",
11
+ "chat_template": null,
12
+ "col_blocksize": -1,
13
+ "col_blocksize_optimizer": 128,
14
+ "draw_distribution_backward": false,
15
+ "draw_distribution_forward": false,
16
+ "drop_path_rate": 0.0,
17
+ "dynamic_s2": false,
18
+ "epsilon": 1e-10,
19
+ "epsilon_optimizer": 1e-15,
20
+ "fabit": "E4M3",
21
+ "first_order_bit": null,
22
+ "first_order_quant_type": null,
23
+ "fobit": "E4M3",
24
+ "fps": 0.0,
25
+ "fwbit": "E4M3",
26
+ "group_size": -1,
27
+ "hidden_size": 1536,
28
+ "high_res_pos_embed": false,
29
+ "image_aspect_ratio": "dynamic",
30
+ "image_encoder": {
31
+ "_target_": "llava.model.encoders.BasicImageEncoder"
32
+ },
33
+ "interpolate_mode": "linear",
34
+ "llm_cfg": {
35
+ "_attn_implementation_autoset": false,
36
+ "_name_or_path": "/data/shared/Qwen/mydisk/output/TOP3/NVILA-Lite-2B-TOP3_SPATIAL_REASONING_80K-20251107_104236/tmp-checkpoint-1250/llm",
37
+ "add_cross_attention": false,
38
+ "architectures": [
39
+ "Qwen2ForCausalLM"
40
+ ],
41
+ "attention_dropout": 0.0,
42
+ "bad_words_ids": null,
43
+ "begin_suppress_tokens": null,
44
+ "bos_token_id": 151643,
45
+ "chunk_size_feed_forward": 0,
46
+ "cross_attention_hidden_size": null,
47
+ "decoder_start_token_id": null,
48
+ "diversity_penalty": 0.0,
49
+ "do_sample": false,
50
+ "early_stopping": false,
51
+ "encoder_no_repeat_ngram_size": 0,
52
+ "eos_token_id": 151645,
53
+ "exponential_decay_length_penalty": null,
54
+ "finetuning_task": null,
55
+ "forced_bos_token_id": null,
56
+ "forced_eos_token_id": null,
57
+ "hidden_act": "silu",
58
+ "hidden_size": 1536,
59
+ "id2label": {
60
+ "0": "LABEL_0",
61
+ "1": "LABEL_1"
62
+ },
63
+ "initializer_range": 0.02,
64
+ "intermediate_size": 8960,
65
+ "is_decoder": false,
66
+ "is_encoder_decoder": false,
67
+ "label2id": {
68
+ "LABEL_0": 0,
69
+ "LABEL_1": 1
70
+ },
71
+ "length_penalty": 1.0,
72
+ "max_length": 20,
73
+ "max_position_embeddings": 32768,
74
+ "max_window_layers": 28,
75
+ "min_length": 0,
76
+ "model_max_length": 4096,
77
+ "model_type": "qwen2",
78
+ "no_repeat_ngram_size": 0,
79
+ "num_attention_heads": 12,
80
+ "num_beam_groups": 1,
81
+ "num_beams": 1,
82
+ "num_hidden_layers": 28,
83
+ "num_key_value_heads": 2,
84
+ "num_return_sequences": 1,
85
+ "output_attentions": false,
86
+ "output_hidden_states": false,
87
+ "output_scores": false,
88
+ "pad_token_id": null,
89
+ "prefix": null,
90
+ "problem_type": null,
91
+ "pruned_heads": {},
92
+ "remove_invalid_values": false,
93
+ "repetition_penalty": 1.0,
94
+ "return_dict": true,
95
+ "return_dict_in_generate": false,
96
+ "rms_norm_eps": 1e-06,
97
+ "rope_scaling": null,
98
+ "rope_theta": 1000000.0,
99
+ "sep_token_id": null,
100
+ "sliding_window": null,
101
+ "suppress_tokens": null,
102
+ "task_specific_params": null,
103
+ "temperature": 1.0,
104
+ "tf_legacy_loss": false,
105
+ "tie_encoder_decoder": false,
106
+ "tie_word_embeddings": true,
107
+ "tokenizer_class": null,
108
+ "tokenizer_model_max_length": 4096,
109
+ "tokenizer_padding_side": "right",
110
+ "top_k": 50,
111
+ "top_p": 1.0,
112
+ "torch_dtype": "bfloat16",
113
+ "torchscript": false,
114
+ "typical_p": 1.0,
115
+ "use_bfloat16": false,
116
+ "use_cache": false,
117
+ "use_sliding_window": false,
118
+ "vocab_size": 151651
119
+ },
120
+ "look_close_mode": "after_image",
121
+ "max_tiles": 12,
122
+ "min_blockunit_col": 4,
123
+ "min_blockunit_row": 4,
124
+ "min_tiles": 1,
125
+ "mlp_path": null,
126
+ "mm_hidden_size": 1152,
127
+ "mm_low_res_token_num": null,
128
+ "mm_projector": "mlp_downsample_3x3_fix",
129
+ "mm_projector_cfg": {
130
+ "_attn_implementation_autoset": false,
131
+ "_name_or_path": "/data/shared/Qwen/mydisk/output/TOP3/NVILA-Lite-2B-TOP3_SPATIAL_REASONING_80K-20251107_104236/tmp-checkpoint-1250/mm_projector",
132
+ "add_cross_attention": false,
133
+ "architectures": [
134
+ "MultimodalProjector"
135
+ ],
136
+ "bad_words_ids": null,
137
+ "begin_suppress_tokens": null,
138
+ "bos_token_id": null,
139
+ "chunk_size_feed_forward": 0,
140
+ "cross_attention_hidden_size": null,
141
+ "decoder_start_token_id": null,
142
+ "diversity_penalty": 0.0,
143
+ "do_sample": false,
144
+ "early_stopping": false,
145
+ "encoder_no_repeat_ngram_size": 0,
146
+ "eos_token_id": null,
147
+ "exponential_decay_length_penalty": null,
148
+ "finetuning_task": null,
149
+ "forced_bos_token_id": null,
150
+ "forced_eos_token_id": null,
151
+ "id2label": {
152
+ "0": "LABEL_0",
153
+ "1": "LABEL_1"
154
+ },
155
+ "is_decoder": false,
156
+ "is_encoder_decoder": false,
157
+ "label2id": {
158
+ "LABEL_0": 0,
159
+ "LABEL_1": 1
160
+ },
161
+ "length_penalty": 1.0,
162
+ "max_length": 20,
163
+ "min_length": 0,
164
+ "mm_projector_type": "mlp_downsample_3x3_fix",
165
+ "model_type": "v2l_projector",
166
+ "no_repeat_ngram_size": 0,
167
+ "num_beam_groups": 1,
168
+ "num_beams": 1,
169
+ "num_return_sequences": 1,
170
+ "output_attentions": false,
171
+ "output_hidden_states": false,
172
+ "output_scores": false,
173
+ "pad_token_id": null,
174
+ "prefix": null,
175
+ "problem_type": null,
176
+ "pruned_heads": {},
177
+ "remove_invalid_values": false,
178
+ "repetition_penalty": 1.0,
179
+ "return_dict": true,
180
+ "return_dict_in_generate": false,
181
+ "sep_token_id": null,
182
+ "suppress_tokens": null,
183
+ "task_specific_params": null,
184
+ "temperature": 1.0,
185
+ "tf_legacy_loss": false,
186
+ "tie_encoder_decoder": false,
187
+ "tie_word_embeddings": true,
188
+ "tokenizer_class": null,
189
+ "top_k": 50,
190
+ "top_p": 1.0,
191
+ "torch_dtype": "bfloat16",
192
+ "torchscript": false,
193
+ "typical_p": 1.0,
194
+ "use_bfloat16": false
195
+ },
196
+ "mm_projector_lr": null,
197
+ "mm_scale_num": null,
198
+ "mm_use_im_patch_token": false,
199
+ "mm_use_im_start_end": false,
200
+ "mm_vision_select_feature": "cls_patch",
201
+ "mm_vision_select_layer": -2,
202
+ "model_dtype": "torch.bfloat16",
203
+ "model_name_or_path": "Efficient-Large-Model/NVILA-Lite-2B",
204
+ "model_type": "llava_llama",
205
+ "num_look_close": 1,
206
+ "num_time_tokens": 0,
207
+ "num_token_look_close": null,
208
+ "num_video_frames": 8,
209
+ "pad_block": false,
210
+ "pad_to_multiple_of": 0,
211
+ "ps3": false,
212
+ "ps3_dynamic_aspect_ratio": false,
213
+ "ps3_grad_checkpointing": false,
214
+ "qchoice": "none",
215
+ "quantize_model": false,
216
+ "refine_attn_blocksize": false,
217
+ "refine_col_blocksize": 4,
218
+ "refine_ln_blocksize": false,
219
+ "refine_ln_blocksize_but_only_backward": false,
220
+ "refine_ln_blocksize_but_only_forward": false,
221
+ "refine_ln_pertoken": false,
222
+ "refine_mlp_blocksize": false,
223
+ "refine_residual_fp": false,
224
+ "refine_row_blocksize": 4,
225
+ "resume_path": "Efficient-Large-Model/NVILA-Lite-2B",
226
+ "row_blocksize": -1,
227
+ "row_blocksize_optimizer": 1,
228
+ "s2": false,
229
+ "s2_max_split_size": 336,
230
+ "s2_resize_output_to_scale_idx": 0,
231
+ "s2_scales": "336,672,1008",
232
+ "second_order_bit": null,
233
+ "second_order_quant_type": null,
234
+ "soft_ce_std": 1.0,
235
+ "symm": true,
236
+ "time_token_format": "<t{t}>",
237
+ "time_token_ids": [],
238
+ "top_down_prompt_head_type": "mlp",
239
+ "transformers_version": "4.46.0",
240
+ "tune_language_model": true,
241
+ "tune_mm_projector": true,
242
+ "tune_vision_tower": true,
243
+ "use_quantize_optimizer": false,
244
+ "version": "auto",
245
+ "video_encoder": {
246
+ "_target_": "llava.model.encoders.BasicVideoEncoder"
247
+ },
248
+ "video_max_tiles": 1,
249
+ "vision_resolution": -1,
250
+ "vision_tower": "Efficient-Large-Model/paligemma-siglip-so400m-patch14-448",
251
+ "vision_tower_cfg": {
252
+ "_attn_implementation_autoset": false,
253
+ "_name_or_path": "/data/shared/Qwen/mydisk/output/TOP3/NVILA-Lite-2B-TOP3_SPATIAL_REASONING_80K-20251107_104236/tmp-checkpoint-1250/vision_tower",
254
+ "add_cross_attention": false,
255
+ "architectures": [
256
+ "SiglipVisionModel"
257
+ ],
258
+ "attention_dropout": 0.0,
259
+ "bad_words_ids": null,
260
+ "begin_suppress_tokens": null,
261
+ "bos_token_id": null,
262
+ "chunk_size_feed_forward": 0,
263
+ "cross_attention_hidden_size": null,
264
+ "decoder_start_token_id": null,
265
+ "diversity_penalty": 0.0,
266
+ "do_sample": false,
267
+ "early_stopping": false,
268
+ "encoder_no_repeat_ngram_size": 0,
269
+ "eos_token_id": null,
270
+ "exponential_decay_length_penalty": null,
271
+ "finetuning_task": null,
272
+ "forced_bos_token_id": null,
273
+ "forced_eos_token_id": null,
274
+ "hidden_act": "gelu_pytorch_tanh",
275
+ "hidden_size": 1152,
276
+ "id2label": {
277
+ "0": "LABEL_0",
278
+ "1": "LABEL_1"
279
+ },
280
+ "image_size": 448,
281
+ "intermediate_size": 4304,
282
+ "is_decoder": false,
283
+ "is_encoder_decoder": false,
284
+ "label2id": {
285
+ "LABEL_0": 0,
286
+ "LABEL_1": 1
287
+ },
288
+ "layer_norm_eps": 1e-06,
289
+ "length_penalty": 1.0,
290
+ "max_length": 20,
291
+ "min_length": 0,
292
+ "model_type": "siglip_vision_model",
293
+ "no_repeat_ngram_size": 0,
294
+ "num_attention_heads": 16,
295
+ "num_beam_groups": 1,
296
+ "num_beams": 1,
297
+ "num_channels": 3,
298
+ "num_hidden_layers": 27,
299
+ "num_image_tokens": 256,
300
+ "num_return_sequences": 1,
301
+ "output_attentions": false,
302
+ "output_hidden_states": false,
303
+ "output_scores": false,
304
+ "pad_token_id": null,
305
+ "patch_size": 14,
306
+ "prefix": null,
307
+ "problem_type": null,
308
+ "projection_dim": 2048,
309
+ "projector_hidden_act": "gelu_fast",
310
+ "pruned_heads": {},
311
+ "remove_invalid_values": false,
312
+ "repetition_penalty": 1.0,
313
+ "return_dict": true,
314
+ "return_dict_in_generate": false,
315
+ "sep_token_id": null,
316
+ "suppress_tokens": null,
317
+ "task_specific_params": null,
318
+ "temperature": 1.0,
319
+ "tf_legacy_loss": false,
320
+ "tie_encoder_decoder": false,
321
+ "tie_word_embeddings": true,
322
+ "tokenizer_class": null,
323
+ "top_k": 50,
324
+ "top_p": 1.0,
325
+ "torch_dtype": "bfloat16",
326
+ "torchscript": false,
327
+ "typical_p": 1.0,
328
+ "use_bfloat16": false,
329
+ "vision_use_head": false
330
+ },
331
+ "vision_tower_lr": null,
332
+ "weight_memory_efficient": true
333
+ }
checkpoint-1250/llm/added_tokens.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<image>": 151649,
3
+ "<vila/sentinel>": 151648,
4
+ "<vila/video>": 151650,
5
+ "<|endoftext|>": 151643,
6
+ "<|im_end|>": 151645,
7
+ "<|im_start|>": 151644,
8
+ "[BOS]": 151646,
9
+ "[PAD]": 151647
10
+ }
checkpoint-1250/llm/config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/data/shared/Qwen/mydisk/output/TOP3/NVILA-Lite-2B-TOP3_SPATIAL_REASONING_80K-20251107_104236/tmp-checkpoint-1250/llm",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 1536,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 8960,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_max_length": 4096,
16
+ "model_type": "qwen2",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 2,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": null,
22
+ "rope_theta": 1000000.0,
23
+ "sliding_window": null,
24
+ "tie_word_embeddings": true,
25
+ "tokenizer_model_max_length": 4096,
26
+ "tokenizer_padding_side": "right",
27
+ "torch_dtype": "bfloat16",
28
+ "transformers_version": "4.46.0",
29
+ "use_cache": false,
30
+ "use_sliding_window": false,
31
+ "vocab_size": 151651
32
+ }
checkpoint-1250/llm/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.46.0"
14
+ }
checkpoint-1250/llm/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1250/llm/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bca17e1eb702807eec0012e38699b7e1cc1bc8aaad247ea2cb0fa52ae449ba6b
3
+ size 3086591624
checkpoint-1250/llm/special_tokens_map.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "[BOS]",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<|im_end|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": {
21
+ "content": "[PAD]",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ }
27
+ }
checkpoint-1250/llm/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fc37d325d718c91319f527fbe8258c03ac890aba2f252b85af89a625927908a
3
+ size 11419189
checkpoint-1250/llm/tokenizer_config.json ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "[BOS]",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "[PAD]",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<vila/sentinel>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<image>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<vila/video>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ }
68
+ },
69
+ "additional_special_tokens": [
70
+ "<|im_start|>",
71
+ "<|im_end|>"
72
+ ],
73
+ "bos_token": "[BOS]",
74
+ "chat_template": "{% if messages[0]['role'] != 'system' %}{{ '<|im_start|>system\\nYou are a helpful assistant<|im_end|>\\n' }}{% endif %}{% for message in messages if message['content'] is not none %}{{ '<|im_start|>' + message['role'] + '\\n' + message['content'] + '<|im_end|>' + '\\n' }}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\\n' }}{% endif %}",
75
+ "clean_up_tokenization_spaces": false,
76
+ "eos_token": "<|im_end|>",
77
+ "errors": "replace",
78
+ "legacy": false,
79
+ "model_max_length": 4096,
80
+ "pad_token": "[PAD]",
81
+ "padding_side": "right",
82
+ "split_special_tokens": false,
83
+ "tokenizer_class": "Qwen2Tokenizer",
84
+ "unk_token": null
85
+ }
checkpoint-1250/llm/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1250/mm_projector/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/data/shared/Qwen/mydisk/output/TOP3/NVILA-Lite-2B-TOP3_SPATIAL_REASONING_80K-20251107_104236/tmp-checkpoint-1250/mm_projector",
3
+ "architectures": [
4
+ "MultimodalProjector"
5
+ ],
6
+ "mm_projector_type": "mlp_downsample_3x3_fix",
7
+ "model_type": "v2l_projector",
8
+ "torch_dtype": "bfloat16",
9
+ "transformers_version": "4.46.0"
10
+ }
checkpoint-1250/mm_projector/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:291bf044b39c6cf2d6c4a252e48a243f94cef15c1b997cdd7d686d7314b88ca3
3
+ size 87068272
checkpoint-1250/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1250/vision_tower/config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/data/shared/Qwen/mydisk/output/TOP3/NVILA-Lite-2B-TOP3_SPATIAL_REASONING_80K-20251107_104236/tmp-checkpoint-1250/vision_tower",
3
+ "architectures": [
4
+ "SiglipVisionModel"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "hidden_act": "gelu_pytorch_tanh",
8
+ "hidden_size": 1152,
9
+ "image_size": 448,
10
+ "intermediate_size": 4304,
11
+ "layer_norm_eps": 1e-06,
12
+ "model_type": "siglip_vision_model",
13
+ "num_attention_heads": 16,
14
+ "num_channels": 3,
15
+ "num_hidden_layers": 27,
16
+ "num_image_tokens": 256,
17
+ "patch_size": 14,
18
+ "projection_dim": 2048,
19
+ "projector_hidden_act": "gelu_fast",
20
+ "torch_dtype": "bfloat16",
21
+ "transformers_version": "4.46.0",
22
+ "vision_use_head": false
23
+ }
checkpoint-1250/vision_tower/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93201e1b0a82f0545b17e6f2c6b4483005c08acb2f09ddd1f3065383ad97116c
3
+ size 826707904
checkpoint-1250/vision_tower/preprocessor_config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": null,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "SiglipImageProcessor",
12
+ "image_std": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "processor_class": "SiglipProcessor",
18
+ "resample": 3,
19
+ "rescale_factor": 0.00392156862745098,
20
+ "size": {
21
+ "height": 448,
22
+ "width": 448
23
+ }
24
+ }
checkpoint-1250/zero_to_fp32.py ADDED
@@ -0,0 +1,578 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage == 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dicts.append(torch.load(f, map_location=device))
147
+
148
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
149
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
150
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
151
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
152
+
153
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
154
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
155
+ # use the max of the partition_count to get the dp world_size.
156
+
157
+ if type(world_size) is list:
158
+ world_size = max(world_size)
159
+
160
+ if world_size != total_files:
161
+ raise ValueError(
162
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
163
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
164
+ )
165
+
166
+ # the groups are named differently in each stage
167
+ if zero_stage == 2:
168
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
169
+ elif zero_stage == 3:
170
+ fp32_groups_key = FP32_FLAT_GROUPS
171
+ else:
172
+ raise ValueError(f"unknown zero stage {zero_stage}")
173
+
174
+ if zero_stage == 2:
175
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
176
+ elif zero_stage == 3:
177
+ # if there is more than one param group, there will be multiple flattened tensors - one
178
+ # flattened tensor per group - for simplicity merge them into a single tensor
179
+ #
180
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
181
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
182
+
183
+ fp32_flat_groups = [
184
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
185
+ ]
186
+
187
+ return zero_stage, world_size, fp32_flat_groups
188
+
189
+
190
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
191
+ """
192
+ Returns fp32 state_dict reconstructed from ds checkpoint
193
+
194
+ Args:
195
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
196
+
197
+ """
198
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
199
+
200
+ optim_files = get_optim_files(ds_checkpoint_dir)
201
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
202
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
203
+
204
+ model_files = get_model_state_files(ds_checkpoint_dir)
205
+
206
+ zero_model_states = parse_model_states(model_files)
207
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
208
+
209
+ if zero_stage == 2:
210
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
211
+ elif zero_stage == 3:
212
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
248
+ param_shapes = zero_model_states[0].param_shapes
249
+
250
+ # Reconstruction protocol:
251
+ #
252
+ # XXX: document this
253
+
254
+ if debug:
255
+ for i in range(world_size):
256
+ for j in range(len(fp32_flat_groups[0])):
257
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
258
+
259
+ # XXX: memory usage doubles here (zero2)
260
+ num_param_groups = len(fp32_flat_groups[0])
261
+ merged_single_partition_of_fp32_groups = []
262
+ for i in range(num_param_groups):
263
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
264
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
265
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
266
+ avail_numel = sum(
267
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
268
+
269
+ if debug:
270
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
271
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
272
+ # not asserting if there is a mismatch due to possible padding
273
+ print(f"Have {avail_numel} numels to process.")
274
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
275
+
276
+ # params
277
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
278
+ # out-of-core computing solution
279
+ total_numel = 0
280
+ total_params = 0
281
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
282
+ offset = 0
283
+ avail_numel = full_single_fp32_vector.numel()
284
+ for name, shape in shapes.items():
285
+
286
+ unpartitioned_numel = shape.numel()
287
+ total_numel += unpartitioned_numel
288
+ total_params += 1
289
+
290
+ if debug:
291
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
292
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
293
+ offset += unpartitioned_numel
294
+
295
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
296
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
297
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
298
+ # live optimizer object, so we are checking that the numbers are within the right range
299
+ align_to = 2 * world_size
300
+
301
+ def zero2_align(x):
302
+ return align_to * math.ceil(x / align_to)
303
+
304
+ if debug:
305
+ print(f"original offset={offset}, avail_numel={avail_numel}")
306
+
307
+ offset = zero2_align(offset)
308
+ avail_numel = zero2_align(avail_numel)
309
+
310
+ if debug:
311
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
312
+
313
+ # Sanity check
314
+ if offset != avail_numel:
315
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
316
+
317
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
318
+
319
+
320
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
321
+ state_dict = OrderedDict()
322
+
323
+ # buffers
324
+ buffers = zero_model_states[0].buffers
325
+ state_dict.update(buffers)
326
+ if debug:
327
+ print(f"added {len(buffers)} buffers")
328
+
329
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
330
+
331
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
332
+
333
+ # recover shared parameters
334
+ for pair in zero_model_states[0].shared_params:
335
+ if pair[1] in state_dict:
336
+ state_dict[pair[0]] = state_dict[pair[1]]
337
+
338
+ return state_dict
339
+
340
+
341
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
342
+ remainder = unpartitioned_numel % world_size
343
+ padding_numel = (world_size - remainder) if remainder else 0
344
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
345
+ return partitioned_numel, padding_numel
346
+
347
+
348
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
349
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
350
+ return
351
+
352
+ if debug:
353
+ for i in range(world_size):
354
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
355
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
356
+
357
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
358
+ wanted_params = len(frozen_param_shapes)
359
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
360
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
361
+ print(f'Frozen params: Have {avail_numel} numels to process.')
362
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
363
+
364
+ total_params = 0
365
+ total_numel = 0
366
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
367
+ total_params += 1
368
+ unpartitioned_numel = shape.numel()
369
+ total_numel += unpartitioned_numel
370
+
371
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
372
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
373
+
374
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
375
+
376
+ if debug:
377
+ print(
378
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
379
+ )
380
+
381
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
382
+
383
+
384
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
385
+ param_shapes = zero_model_states[0].param_shapes
386
+ avail_numel = fp32_flat_groups[0].numel() * world_size
387
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
388
+ # param, re-consolidating each param, while dealing with padding if any
389
+
390
+ # merge list of dicts, preserving order
391
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
392
+
393
+ if debug:
394
+ for i in range(world_size):
395
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
396
+
397
+ wanted_params = len(param_shapes)
398
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
399
+ # not asserting if there is a mismatch due to possible padding
400
+ avail_numel = fp32_flat_groups[0].numel() * world_size
401
+ print(f"Trainable params: Have {avail_numel} numels to process.")
402
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
403
+
404
+ # params
405
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
406
+ # out-of-core computing solution
407
+ offset = 0
408
+ total_numel = 0
409
+ total_params = 0
410
+ for name, shape in param_shapes.items():
411
+
412
+ unpartitioned_numel = shape.numel()
413
+ total_numel += unpartitioned_numel
414
+ total_params += 1
415
+
416
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
417
+
418
+ if debug:
419
+ print(
420
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
421
+ )
422
+
423
+ # XXX: memory usage doubles here
424
+ state_dict[name] = torch.cat(
425
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
426
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
427
+ offset += partitioned_numel
428
+
429
+ offset *= world_size
430
+
431
+ # Sanity check
432
+ if offset != avail_numel:
433
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
434
+
435
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
436
+
437
+
438
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
439
+ state_dict = OrderedDict()
440
+
441
+ # buffers
442
+ buffers = zero_model_states[0].buffers
443
+ state_dict.update(buffers)
444
+ if debug:
445
+ print(f"added {len(buffers)} buffers")
446
+
447
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
448
+
449
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
450
+
451
+ # recover shared parameters
452
+ for pair in zero_model_states[0].shared_params:
453
+ if pair[1] in state_dict:
454
+ state_dict[pair[0]] = state_dict[pair[1]]
455
+
456
+ return state_dict
457
+
458
+
459
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
460
+ """
461
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
462
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
463
+ via a model hub.
464
+
465
+ Args:
466
+ - ``checkpoint_dir``: path to the desired checkpoint folder
467
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
468
+
469
+ Returns:
470
+ - pytorch ``state_dict``
471
+
472
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
473
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
474
+ the checkpoint.
475
+
476
+ A typical usage might be ::
477
+
478
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
479
+ # do the training and checkpoint saving
480
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
481
+ model = model.cpu() # move to cpu
482
+ model.load_state_dict(state_dict)
483
+ # submit to model hub or save the model to share with others
484
+
485
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
486
+ application. i.e. you will need to re-initialize the deepspeed engine, since
487
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
488
+
489
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
490
+
491
+ """
492
+ if tag is None:
493
+ latest_path = os.path.join(checkpoint_dir, 'latest')
494
+ if os.path.isfile(latest_path):
495
+ with open(latest_path, 'r') as fd:
496
+ tag = fd.read().strip()
497
+ else:
498
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
499
+
500
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
501
+
502
+ if not os.path.isdir(ds_checkpoint_dir):
503
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
504
+
505
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
506
+
507
+
508
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
509
+ """
510
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
511
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
512
+
513
+ Args:
514
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
515
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
516
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
517
+ """
518
+
519
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
520
+ print(f"Saving fp32 state dict to {output_file}")
521
+ torch.save(state_dict, output_file)
522
+
523
+
524
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
525
+ """
526
+ 1. Put the provided model to cpu
527
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
528
+ 3. Load it into the provided model
529
+
530
+ Args:
531
+ - ``model``: the model object to update
532
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
533
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
534
+
535
+ Returns:
536
+ - ``model`: modified model
537
+
538
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
539
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
540
+ conveniently placed for you in the checkpoint folder.
541
+
542
+ A typical usage might be ::
543
+
544
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
545
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
546
+ # submit to model hub or save the model to share with others
547
+
548
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
549
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
550
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
551
+
552
+ """
553
+ logger.info(f"Extracting fp32 weights")
554
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
555
+
556
+ logger.info(f"Overwriting model with fp32 weights")
557
+ model = model.cpu()
558
+ model.load_state_dict(state_dict, strict=False)
559
+
560
+ return model
561
+
562
+
563
+ if __name__ == "__main__":
564
+
565
+ parser = argparse.ArgumentParser()
566
+ parser.add_argument("checkpoint_dir",
567
+ type=str,
568
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
569
+ parser.add_argument(
570
+ "output_file",
571
+ type=str,
572
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
573
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
574
+ args = parser.parse_args()
575
+
576
+ debug = args.debug
577
+
578
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
config.json ADDED
@@ -0,0 +1,333 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "Ubit": 100,
3
+ "_attn_implementation_autoset": true,
4
+ "_name_or_path": "/data/shared/Qwen/mydisk/output/TOP3/NVILA-Lite-2B-TOP3_SPATIAL_REASONING_80K-20251107_104236",
5
+ "architectures": [
6
+ "LlavaLlamaModel"
7
+ ],
8
+ "babit": "E5M2",
9
+ "bobit": "E5M2",
10
+ "bwbit": "E5M2",
11
+ "chat_template": null,
12
+ "col_blocksize": -1,
13
+ "col_blocksize_optimizer": 128,
14
+ "draw_distribution_backward": false,
15
+ "draw_distribution_forward": false,
16
+ "drop_path_rate": 0.0,
17
+ "dynamic_s2": false,
18
+ "epsilon": 1e-10,
19
+ "epsilon_optimizer": 1e-15,
20
+ "fabit": "E4M3",
21
+ "first_order_bit": null,
22
+ "first_order_quant_type": null,
23
+ "fobit": "E4M3",
24
+ "fps": 0.0,
25
+ "fwbit": "E4M3",
26
+ "group_size": -1,
27
+ "hidden_size": 1536,
28
+ "high_res_pos_embed": false,
29
+ "image_aspect_ratio": "dynamic",
30
+ "image_encoder": {
31
+ "_target_": "llava.model.encoders.BasicImageEncoder"
32
+ },
33
+ "interpolate_mode": "linear",
34
+ "llm_cfg": {
35
+ "_attn_implementation_autoset": false,
36
+ "_name_or_path": "/data/shared/Qwen/mydisk/output/TOP3/NVILA-Lite-2B-TOP3_SPATIAL_REASONING_80K-20251107_104236/llm",
37
+ "add_cross_attention": false,
38
+ "architectures": [
39
+ "Qwen2ForCausalLM"
40
+ ],
41
+ "attention_dropout": 0.0,
42
+ "bad_words_ids": null,
43
+ "begin_suppress_tokens": null,
44
+ "bos_token_id": 151643,
45
+ "chunk_size_feed_forward": 0,
46
+ "cross_attention_hidden_size": null,
47
+ "decoder_start_token_id": null,
48
+ "diversity_penalty": 0.0,
49
+ "do_sample": false,
50
+ "early_stopping": false,
51
+ "encoder_no_repeat_ngram_size": 0,
52
+ "eos_token_id": 151645,
53
+ "exponential_decay_length_penalty": null,
54
+ "finetuning_task": null,
55
+ "forced_bos_token_id": null,
56
+ "forced_eos_token_id": null,
57
+ "hidden_act": "silu",
58
+ "hidden_size": 1536,
59
+ "id2label": {
60
+ "0": "LABEL_0",
61
+ "1": "LABEL_1"
62
+ },
63
+ "initializer_range": 0.02,
64
+ "intermediate_size": 8960,
65
+ "is_decoder": false,
66
+ "is_encoder_decoder": false,
67
+ "label2id": {
68
+ "LABEL_0": 0,
69
+ "LABEL_1": 1
70
+ },
71
+ "length_penalty": 1.0,
72
+ "max_length": 20,
73
+ "max_position_embeddings": 32768,
74
+ "max_window_layers": 28,
75
+ "min_length": 0,
76
+ "model_max_length": 4096,
77
+ "model_type": "qwen2",
78
+ "no_repeat_ngram_size": 0,
79
+ "num_attention_heads": 12,
80
+ "num_beam_groups": 1,
81
+ "num_beams": 1,
82
+ "num_hidden_layers": 28,
83
+ "num_key_value_heads": 2,
84
+ "num_return_sequences": 1,
85
+ "output_attentions": false,
86
+ "output_hidden_states": false,
87
+ "output_scores": false,
88
+ "pad_token_id": null,
89
+ "prefix": null,
90
+ "problem_type": null,
91
+ "pruned_heads": {},
92
+ "remove_invalid_values": false,
93
+ "repetition_penalty": 1.0,
94
+ "return_dict": true,
95
+ "return_dict_in_generate": false,
96
+ "rms_norm_eps": 1e-06,
97
+ "rope_scaling": null,
98
+ "rope_theta": 1000000.0,
99
+ "sep_token_id": null,
100
+ "sliding_window": null,
101
+ "suppress_tokens": null,
102
+ "task_specific_params": null,
103
+ "temperature": 1.0,
104
+ "tf_legacy_loss": false,
105
+ "tie_encoder_decoder": false,
106
+ "tie_word_embeddings": true,
107
+ "tokenizer_class": null,
108
+ "tokenizer_model_max_length": 4096,
109
+ "tokenizer_padding_side": "right",
110
+ "top_k": 50,
111
+ "top_p": 1.0,
112
+ "torch_dtype": "bfloat16",
113
+ "torchscript": false,
114
+ "typical_p": 1.0,
115
+ "use_bfloat16": false,
116
+ "use_cache": true,
117
+ "use_sliding_window": false,
118
+ "vocab_size": 151651
119
+ },
120
+ "look_close_mode": "after_image",
121
+ "max_tiles": 12,
122
+ "min_blockunit_col": 4,
123
+ "min_blockunit_row": 4,
124
+ "min_tiles": 1,
125
+ "mlp_path": null,
126
+ "mm_hidden_size": 1152,
127
+ "mm_low_res_token_num": null,
128
+ "mm_projector": "mlp_downsample_3x3_fix",
129
+ "mm_projector_cfg": {
130
+ "_attn_implementation_autoset": false,
131
+ "_name_or_path": "/data/shared/Qwen/mydisk/output/TOP3/NVILA-Lite-2B-TOP3_SPATIAL_REASONING_80K-20251107_104236/mm_projector",
132
+ "add_cross_attention": false,
133
+ "architectures": [
134
+ "MultimodalProjector"
135
+ ],
136
+ "bad_words_ids": null,
137
+ "begin_suppress_tokens": null,
138
+ "bos_token_id": null,
139
+ "chunk_size_feed_forward": 0,
140
+ "cross_attention_hidden_size": null,
141
+ "decoder_start_token_id": null,
142
+ "diversity_penalty": 0.0,
143
+ "do_sample": false,
144
+ "early_stopping": false,
145
+ "encoder_no_repeat_ngram_size": 0,
146
+ "eos_token_id": null,
147
+ "exponential_decay_length_penalty": null,
148
+ "finetuning_task": null,
149
+ "forced_bos_token_id": null,
150
+ "forced_eos_token_id": null,
151
+ "id2label": {
152
+ "0": "LABEL_0",
153
+ "1": "LABEL_1"
154
+ },
155
+ "is_decoder": false,
156
+ "is_encoder_decoder": false,
157
+ "label2id": {
158
+ "LABEL_0": 0,
159
+ "LABEL_1": 1
160
+ },
161
+ "length_penalty": 1.0,
162
+ "max_length": 20,
163
+ "min_length": 0,
164
+ "mm_projector_type": "mlp_downsample_3x3_fix",
165
+ "model_type": "v2l_projector",
166
+ "no_repeat_ngram_size": 0,
167
+ "num_beam_groups": 1,
168
+ "num_beams": 1,
169
+ "num_return_sequences": 1,
170
+ "output_attentions": false,
171
+ "output_hidden_states": false,
172
+ "output_scores": false,
173
+ "pad_token_id": null,
174
+ "prefix": null,
175
+ "problem_type": null,
176
+ "pruned_heads": {},
177
+ "remove_invalid_values": false,
178
+ "repetition_penalty": 1.0,
179
+ "return_dict": true,
180
+ "return_dict_in_generate": false,
181
+ "sep_token_id": null,
182
+ "suppress_tokens": null,
183
+ "task_specific_params": null,
184
+ "temperature": 1.0,
185
+ "tf_legacy_loss": false,
186
+ "tie_encoder_decoder": false,
187
+ "tie_word_embeddings": true,
188
+ "tokenizer_class": null,
189
+ "top_k": 50,
190
+ "top_p": 1.0,
191
+ "torch_dtype": "bfloat16",
192
+ "torchscript": false,
193
+ "typical_p": 1.0,
194
+ "use_bfloat16": false
195
+ },
196
+ "mm_projector_lr": null,
197
+ "mm_scale_num": null,
198
+ "mm_use_im_patch_token": false,
199
+ "mm_use_im_start_end": false,
200
+ "mm_vision_select_feature": "cls_patch",
201
+ "mm_vision_select_layer": -2,
202
+ "model_dtype": "torch.bfloat16",
203
+ "model_name_or_path": "Efficient-Large-Model/NVILA-Lite-2B",
204
+ "model_type": "llava_llama",
205
+ "num_look_close": 1,
206
+ "num_time_tokens": 0,
207
+ "num_token_look_close": null,
208
+ "num_video_frames": 8,
209
+ "pad_block": false,
210
+ "pad_to_multiple_of": 0,
211
+ "ps3": false,
212
+ "ps3_dynamic_aspect_ratio": false,
213
+ "ps3_grad_checkpointing": false,
214
+ "qchoice": "none",
215
+ "quantize_model": false,
216
+ "refine_attn_blocksize": false,
217
+ "refine_col_blocksize": 4,
218
+ "refine_ln_blocksize": false,
219
+ "refine_ln_blocksize_but_only_backward": false,
220
+ "refine_ln_blocksize_but_only_forward": false,
221
+ "refine_ln_pertoken": false,
222
+ "refine_mlp_blocksize": false,
223
+ "refine_residual_fp": false,
224
+ "refine_row_blocksize": 4,
225
+ "resume_path": "/data/shared/Qwen/mydisk/output/TOP3/NVILA-Lite-2B-TOP3_SPATIAL_REASONING_80K-20251107_104236",
226
+ "row_blocksize": -1,
227
+ "row_blocksize_optimizer": 1,
228
+ "s2": false,
229
+ "s2_max_split_size": 336,
230
+ "s2_resize_output_to_scale_idx": 0,
231
+ "s2_scales": "336,672,1008",
232
+ "second_order_bit": null,
233
+ "second_order_quant_type": null,
234
+ "soft_ce_std": 1.0,
235
+ "symm": true,
236
+ "time_token_format": "<t{t}>",
237
+ "time_token_ids": [],
238
+ "top_down_prompt_head_type": "mlp",
239
+ "transformers_version": "4.46.0",
240
+ "tune_language_model": true,
241
+ "tune_mm_projector": true,
242
+ "tune_vision_tower": true,
243
+ "use_quantize_optimizer": false,
244
+ "version": "auto",
245
+ "video_encoder": {
246
+ "_target_": "llava.model.encoders.BasicVideoEncoder"
247
+ },
248
+ "video_max_tiles": 1,
249
+ "vision_resolution": -1,
250
+ "vision_tower": "Efficient-Large-Model/paligemma-siglip-so400m-patch14-448",
251
+ "vision_tower_cfg": {
252
+ "_attn_implementation_autoset": false,
253
+ "_name_or_path": "/data/shared/Qwen/mydisk/output/TOP3/NVILA-Lite-2B-TOP3_SPATIAL_REASONING_80K-20251107_104236/vision_tower",
254
+ "add_cross_attention": false,
255
+ "architectures": [
256
+ "SiglipVisionModel"
257
+ ],
258
+ "attention_dropout": 0.0,
259
+ "bad_words_ids": null,
260
+ "begin_suppress_tokens": null,
261
+ "bos_token_id": null,
262
+ "chunk_size_feed_forward": 0,
263
+ "cross_attention_hidden_size": null,
264
+ "decoder_start_token_id": null,
265
+ "diversity_penalty": 0.0,
266
+ "do_sample": false,
267
+ "early_stopping": false,
268
+ "encoder_no_repeat_ngram_size": 0,
269
+ "eos_token_id": null,
270
+ "exponential_decay_length_penalty": null,
271
+ "finetuning_task": null,
272
+ "forced_bos_token_id": null,
273
+ "forced_eos_token_id": null,
274
+ "hidden_act": "gelu_pytorch_tanh",
275
+ "hidden_size": 1152,
276
+ "id2label": {
277
+ "0": "LABEL_0",
278
+ "1": "LABEL_1"
279
+ },
280
+ "image_size": 448,
281
+ "intermediate_size": 4304,
282
+ "is_decoder": false,
283
+ "is_encoder_decoder": false,
284
+ "label2id": {
285
+ "LABEL_0": 0,
286
+ "LABEL_1": 1
287
+ },
288
+ "layer_norm_eps": 1e-06,
289
+ "length_penalty": 1.0,
290
+ "max_length": 20,
291
+ "min_length": 0,
292
+ "model_type": "siglip_vision_model",
293
+ "no_repeat_ngram_size": 0,
294
+ "num_attention_heads": 16,
295
+ "num_beam_groups": 1,
296
+ "num_beams": 1,
297
+ "num_channels": 3,
298
+ "num_hidden_layers": 27,
299
+ "num_image_tokens": 256,
300
+ "num_return_sequences": 1,
301
+ "output_attentions": false,
302
+ "output_hidden_states": false,
303
+ "output_scores": false,
304
+ "pad_token_id": null,
305
+ "patch_size": 14,
306
+ "prefix": null,
307
+ "problem_type": null,
308
+ "projection_dim": 2048,
309
+ "projector_hidden_act": "gelu_fast",
310
+ "pruned_heads": {},
311
+ "remove_invalid_values": false,
312
+ "repetition_penalty": 1.0,
313
+ "return_dict": true,
314
+ "return_dict_in_generate": false,
315
+ "sep_token_id": null,
316
+ "suppress_tokens": null,
317
+ "task_specific_params": null,
318
+ "temperature": 1.0,
319
+ "tf_legacy_loss": false,
320
+ "tie_encoder_decoder": false,
321
+ "tie_word_embeddings": true,
322
+ "tokenizer_class": null,
323
+ "top_k": 50,
324
+ "top_p": 1.0,
325
+ "torch_dtype": "bfloat16",
326
+ "torchscript": false,
327
+ "typical_p": 1.0,
328
+ "use_bfloat16": false,
329
+ "vision_use_head": false
330
+ },
331
+ "vision_tower_lr": null,
332
+ "weight_memory_efficient": true
333
+ }
llm/added_tokens.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<image>": 151649,
3
+ "<vila/sentinel>": 151648,
4
+ "<vila/video>": 151650,
5
+ "<|endoftext|>": 151643,
6
+ "<|im_end|>": 151645,
7
+ "<|im_start|>": 151644,
8
+ "[BOS]": 151646,
9
+ "[PAD]": 151647
10
+ }
llm/config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/data/shared/Qwen/mydisk/output/TOP3/NVILA-Lite-2B-TOP3_SPATIAL_REASONING_80K-20251107_104236/llm",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 1536,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 8960,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 28,
15
+ "model_max_length": 4096,
16
+ "model_type": "qwen2",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 2,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": null,
22
+ "rope_theta": 1000000.0,
23
+ "sliding_window": null,
24
+ "tie_word_embeddings": true,
25
+ "tokenizer_model_max_length": 4096,
26
+ "tokenizer_padding_side": "right",
27
+ "torch_dtype": "bfloat16",
28
+ "transformers_version": "4.46.0",
29
+ "use_cache": true,
30
+ "use_sliding_window": false,
31
+ "vocab_size": 151651
32
+ }
llm/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.46.0"
14
+ }
llm/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
llm/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bca17e1eb702807eec0012e38699b7e1cc1bc8aaad247ea2cb0fa52ae449ba6b
3
+ size 3086591624
llm/special_tokens_map.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "[BOS]",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<|im_end|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "pad_token": {
21
+ "content": "[PAD]",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ }
27
+ }
llm/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fc37d325d718c91319f527fbe8258c03ac890aba2f252b85af89a625927908a
3
+ size 11419189
llm/tokenizer_config.json ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "[BOS]",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "[PAD]",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<vila/sentinel>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<image>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<vila/video>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ }
68
+ },
69
+ "additional_special_tokens": [
70
+ "<|im_start|>",
71
+ "<|im_end|>"
72
+ ],
73
+ "bos_token": "[BOS]",
74
+ "chat_template": "{% if messages[0]['role'] != 'system' %}{{ '<|im_start|>system\\nYou are a helpful assistant<|im_end|>\\n' }}{% endif %}{% for message in messages if message['content'] is not none %}{{ '<|im_start|>' + message['role'] + '\\n' + message['content'] + '<|im_end|>' + '\\n' }}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\\n' }}{% endif %}",
75
+ "clean_up_tokenization_spaces": false,
76
+ "eos_token": "<|im_end|>",
77
+ "errors": "replace",
78
+ "legacy": false,
79
+ "model_max_length": 4096,
80
+ "pad_token": "[PAD]",
81
+ "padding_side": "right",
82
+ "split_special_tokens": false,
83
+ "tokenizer_class": "Qwen2Tokenizer",
84
+ "unk_token": null
85
+ }
llm/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
mm_projector/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/data/shared/Qwen/mydisk/output/TOP3/NVILA-Lite-2B-TOP3_SPATIAL_REASONING_80K-20251107_104236/mm_projector",
3
+ "architectures": [
4
+ "MultimodalProjector"
5
+ ],
6
+ "mm_projector_type": "mlp_downsample_3x3_fix",
7
+ "model_type": "v2l_projector",
8
+ "torch_dtype": "bfloat16",
9
+ "transformers_version": "4.46.0"
10
+ }
mm_projector/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:291bf044b39c6cf2d6c4a252e48a243f94cef15c1b997cdd7d686d7314b88ca3
3
+ size 87068272
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
vision_tower/config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/data/shared/Qwen/mydisk/output/TOP3/NVILA-Lite-2B-TOP3_SPATIAL_REASONING_80K-20251107_104236/vision_tower",
3
+ "architectures": [
4
+ "SiglipVisionModel"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "hidden_act": "gelu_pytorch_tanh",
8
+ "hidden_size": 1152,
9
+ "image_size": 448,
10
+ "intermediate_size": 4304,
11
+ "layer_norm_eps": 1e-06,
12
+ "model_type": "siglip_vision_model",
13
+ "num_attention_heads": 16,
14
+ "num_channels": 3,
15
+ "num_hidden_layers": 27,
16
+ "num_image_tokens": 256,
17
+ "patch_size": 14,
18
+ "projection_dim": 2048,
19
+ "projector_hidden_act": "gelu_fast",
20
+ "torch_dtype": "bfloat16",
21
+ "transformers_version": "4.46.0",
22
+ "vision_use_head": false
23
+ }
vision_tower/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93201e1b0a82f0545b17e6f2c6b4483005c08acb2f09ddd1f3065383ad97116c
3
+ size 826707904
vision_tower/preprocessor_config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": null,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.5,
8
+ 0.5,
9
+ 0.5
10
+ ],
11
+ "image_processor_type": "SiglipImageProcessor",
12
+ "image_std": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "processor_class": "SiglipProcessor",
18
+ "resample": 3,
19
+ "rescale_factor": 0.00392156862745098,
20
+ "size": {
21
+ "height": 448,
22
+ "width": 448
23
+ }
24
+ }