Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,44 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
datasets:
|
| 4 |
+
- clip-rt/modified_libero_hdf5
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
tags:
|
| 8 |
+
- robotics
|
| 9 |
+
- vla
|
| 10 |
+
- clip
|
| 11 |
+
- contrastive_learning
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# CLIP-RT Finetuned on LIBERO-10
|
| 15 |
+
|
| 16 |
+
We finetune the original [CLIP-RT model](https://clip-rt.github.io/) with a 300M-parameter action decoder to enable continuous action prediction. This checkpoint is the model finetuned on [LIBERO](https://libero-project.github.io/main.html) 10 task suite.
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
## Hyperparemeters
|
| 20 |
+
|
| 21 |
+
| Category | Details |
|
| 22 |
+
|----------------------|---------------------------------------------------------------------|
|
| 23 |
+
| **Train** | 8 × H100 GPUs, each with 80GB VRAM (batch size: 256) |
|
| 24 |
+
| **Model size** | 1.3B (CLIP-RT base + 0.3B action decoder) |
|
| 25 |
+
| **Action dimension** | 7D end-effector action × 8 action chunks |
|
| 26 |
+
| **Loss** | L1 regression |
|
| 27 |
+
| **Epochs** | 128 |
|
| 28 |
+
| **Performance** | 83.8% success rate on the LIBERO-10 task suite |
|
| 29 |
+
| **Throughput** | 163Hz |
|
| 30 |
+
| **Inference** | One GPU with 9GB VRAM |
|
| 31 |
+
|
| 32 |
+
## Usage Instructions
|
| 33 |
+
If you want to evaluate this model on the LIBERO simulator, please refer to the [clip-rt github repository](https://github.com/clip-rt/clip-rt/tree/main/libero).
|
| 34 |
+
|
| 35 |
+
## Citation
|
| 36 |
+
|
| 37 |
+
```bibtex
|
| 38 |
+
@article{kang2024cliprt,
|
| 39 |
+
title={CLIP-RT: Learning Language-Conditioned Robotic Policies from Natural Language Supervision},
|
| 40 |
+
author={Kang, Gi-Cheon and Kim, Junghyun and Shim, Kyuhwan and Lee, Jun Ki and Zhang, Byoung-Tak},
|
| 41 |
+
journal={arXiv preprint arXiv:2411.00508},
|
| 42 |
+
year = {2024}
|
| 43 |
+
}
|
| 44 |
+
```
|