Update code examples with diffusion-specific parameters
Browse files
README.md
CHANGED
|
@@ -164,17 +164,17 @@ from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
| 164 |
tokenizer = AutoTokenizer.from_pretrained("codelion/dhara-70m")
|
| 165 |
model = AutoModelForCausalLM.from_pretrained("codelion/dhara-70m", trust_remote_code=True)
|
| 166 |
|
| 167 |
-
# Generate text
|
| 168 |
inputs = tokenizer("The future of AI is", return_tensors="pt")
|
| 169 |
outputs = model.generate(
|
| 170 |
**inputs,
|
| 171 |
-
|
|
|
|
| 172 |
do_sample=True,
|
| 173 |
temperature=0.8,
|
| 174 |
-
top_p=0.9
|
| 175 |
-
pad_token_id=tokenizer.eos_token_id
|
| 176 |
)
|
| 177 |
-
print(tokenizer.decode(outputs[0]))
|
| 178 |
```
|
| 179 |
|
| 180 |
### Batch Generation (High Throughput)
|
|
|
|
| 164 |
tokenizer = AutoTokenizer.from_pretrained("codelion/dhara-70m")
|
| 165 |
model = AutoModelForCausalLM.from_pretrained("codelion/dhara-70m", trust_remote_code=True)
|
| 166 |
|
| 167 |
+
# Generate text using diffusion sampling
|
| 168 |
inputs = tokenizer("The future of AI is", return_tensors="pt")
|
| 169 |
outputs = model.generate(
|
| 170 |
**inputs,
|
| 171 |
+
max_new_tokens=40, # Generate 40 new tokens
|
| 172 |
+
num_diffusion_steps=10, # Diffusion denoising steps (higher = better quality)
|
| 173 |
do_sample=True,
|
| 174 |
temperature=0.8,
|
| 175 |
+
top_p=0.9
|
|
|
|
| 176 |
)
|
| 177 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 178 |
```
|
| 179 |
|
| 180 |
### Batch Generation (High Throughput)
|