-
Compose and Conquer: Diffusion-Based 3D Depth Aware Composable Image Synthesis
Paper • 2401.09048 • Published • 10 -
Improving fine-grained understanding in image-text pre-training
Paper • 2401.09865 • Published • 18 -
Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data
Paper • 2401.10891 • Published • 62 -
Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild
Paper • 2401.13627 • Published • 77
Collections
Discover the best community collections!
Collections including paper arxiv:2503.08619
-
FAST: Efficient Action Tokenization for Vision-Language-Action Models
Paper • 2501.09747 • Published • 27 -
Tensor Product Attention Is All You Need
Paper • 2501.06425 • Published • 89 -
SPAM: Spike-Aware Adam with Momentum Reset for Stable LLM Training
Paper • 2501.06842 • Published • 16 -
LLaVA-Mini: Efficient Image and Video Large Multimodal Models with One Vision Token
Paper • 2501.03895 • Published • 52
-
EVA-CLIP-18B: Scaling CLIP to 18 Billion Parameters
Paper • 2402.04252 • Published • 28 -
Vision Superalignment: Weak-to-Strong Generalization for Vision Foundation Models
Paper • 2402.03749 • Published • 14 -
ScreenAI: A Vision-Language Model for UI and Infographics Understanding
Paper • 2402.04615 • Published • 44 -
EfficientViT-SAM: Accelerated Segment Anything Model Without Performance Loss
Paper • 2402.05008 • Published • 23
-
RuCCoD: Towards Automated ICD Coding in Russian
Paper • 2502.21263 • Published • 133 -
Unified Reward Model for Multimodal Understanding and Generation
Paper • 2503.05236 • Published • 123 -
Sketch-of-Thought: Efficient LLM Reasoning with Adaptive Cognitive-Inspired Sketching
Paper • 2503.05179 • Published • 46 -
R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning
Paper • 2503.05592 • Published • 27
-
LinFusion: 1 GPU, 1 Minute, 16K Image
Paper • 2409.02097 • Published • 34 -
Phidias: A Generative Model for Creating 3D Content from Text, Image, and 3D Conditions with Reference-Augmented Diffusion
Paper • 2409.11406 • Published • 27 -
Diffusion Models Are Real-Time Game Engines
Paper • 2408.14837 • Published • 126 -
Segment Anything with Multiple Modalities
Paper • 2408.09085 • Published • 22
-
Compose and Conquer: Diffusion-Based 3D Depth Aware Composable Image Synthesis
Paper • 2401.09048 • Published • 10 -
Improving fine-grained understanding in image-text pre-training
Paper • 2401.09865 • Published • 18 -
Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data
Paper • 2401.10891 • Published • 62 -
Scaling Up to Excellence: Practicing Model Scaling for Photo-Realistic Image Restoration In the Wild
Paper • 2401.13627 • Published • 77
-
RuCCoD: Towards Automated ICD Coding in Russian
Paper • 2502.21263 • Published • 133 -
Unified Reward Model for Multimodal Understanding and Generation
Paper • 2503.05236 • Published • 123 -
Sketch-of-Thought: Efficient LLM Reasoning with Adaptive Cognitive-Inspired Sketching
Paper • 2503.05179 • Published • 46 -
R1-Searcher: Incentivizing the Search Capability in LLMs via Reinforcement Learning
Paper • 2503.05592 • Published • 27
-
FAST: Efficient Action Tokenization for Vision-Language-Action Models
Paper • 2501.09747 • Published • 27 -
Tensor Product Attention Is All You Need
Paper • 2501.06425 • Published • 89 -
SPAM: Spike-Aware Adam with Momentum Reset for Stable LLM Training
Paper • 2501.06842 • Published • 16 -
LLaVA-Mini: Efficient Image and Video Large Multimodal Models with One Vision Token
Paper • 2501.03895 • Published • 52
-
LinFusion: 1 GPU, 1 Minute, 16K Image
Paper • 2409.02097 • Published • 34 -
Phidias: A Generative Model for Creating 3D Content from Text, Image, and 3D Conditions with Reference-Augmented Diffusion
Paper • 2409.11406 • Published • 27 -
Diffusion Models Are Real-Time Game Engines
Paper • 2408.14837 • Published • 126 -
Segment Anything with Multiple Modalities
Paper • 2408.09085 • Published • 22
-
EVA-CLIP-18B: Scaling CLIP to 18 Billion Parameters
Paper • 2402.04252 • Published • 28 -
Vision Superalignment: Weak-to-Strong Generalization for Vision Foundation Models
Paper • 2402.03749 • Published • 14 -
ScreenAI: A Vision-Language Model for UI and Infographics Understanding
Paper • 2402.04615 • Published • 44 -
EfficientViT-SAM: Accelerated Segment Anything Model Without Performance Loss
Paper • 2402.05008 • Published • 23