contemmcm's picture
End of training
ff9e0dd verified
metadata
library_name: transformers
license: apache-2.0
base_model: albert/albert-large-v1
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: c298e056e156114f1678fe4e60096c0a
    results: []

c298e056e156114f1678fe4e60096c0a

This model is a fine-tuned version of albert/albert-large-v1 on the contemmcm/trec dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3011
  • Data Size: 1.0
  • Epoch Runtime: 10.5298
  • Accuracy: 0.9375
  • F1 Macro: 0.9255

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro
No log 0 0 1.9176 0 0.8533 0.2021 0.0884
No log 1 170 1.6871 0.0078 1.2174 0.325 0.1475
No log 2 340 1.6486 0.0156 1.0379 0.3771 0.1709
No log 3 510 1.4030 0.0312 1.2834 0.4583 0.2928
No log 4 680 1.0860 0.0625 1.6574 0.6021 0.4622
0.0738 5 850 0.5758 0.125 2.2227 0.8292 0.6888
0.0738 6 1020 0.6142 0.25 3.3356 0.7729 0.7175
0.3708 7 1190 0.3157 0.5 5.6539 0.9229 0.8567
0.3065 8.0 1360 0.2917 1.0 10.8257 0.9333 0.9148
0.2271 9.0 1530 0.2740 1.0 10.7049 0.9313 0.9336
0.2297 10.0 1700 0.2193 1.0 10.7394 0.9542 0.9535
0.1829 11.0 1870 0.2914 1.0 10.7309 0.9542 0.9320
0.1473 12.0 2040 0.3035 1.0 10.6042 0.9375 0.9005
0.0766 13.0 2210 0.6906 1.0 10.5800 0.8979 0.9117
0.092 14.0 2380 0.3011 1.0 10.5298 0.9375 0.9255

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.22.1