File size: 3,893 Bytes
8acda2c 340ae55 8acda2c 340ae55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
---
license: apache-2.0
---
# From Static to Dynamic: Adapting Landmark-Aware Image Models for Facial Expression Recognition in Videos
<img width="1024" alt="image" src="https://github.com/user-attachments/assets/c629e924-cec2-46c9-9e9a-369b4e6d0aef">
[](https://paperswithcode.com/sota/dynamic-facial-expression-recognition-on?p=from-static-to-dynamic-adapting-landmark-1)<br>
[](https://paperswithcode.com/sota/dynamic-facial-expression-recognition-on-dfew?p=from-static-to-dynamic-adapting-landmark-1)<br>
[](https://paperswithcode.com/sota/dynamic-facial-expression-recognition-on-mafw?p=from-static-to-dynamic-adapting-landmark-1)<br>
[](https://paperswithcode.com/sota/facial-expression-recognition-on-affectnet?p=from-static-to-dynamic-adapting-landmark-1)<br>
[](https://paperswithcode.com/sota/facial-expression-recognition-on-raf-db?p=from-static-to-dynamic-adapting-landmark-1)<br>
>[From Static to Dynamic: Adapting Landmark-Aware Image Models for Facial Expression Recognition in Videos](https://ieeexplore.ieee.org/document/10663980)<br>
>Yin Chen$^{β }$, Jia Li$^{β β}$, Shiguang Shan, Meng Wang, and Richang Hong
## π° News
**[2024.9.5]** The fine-tuned checkpoints are available.
**[2024.9.2]** The code and pre-trained models are available.
**[2024.8.28]** The paper is accepted by IEEE Transactions on Affective Computing.
**[2023.12.5]** ~~Code and pre-trained models will be released here~~.
## π Main Results
### Dynamic Facial Expression Recognition
<img width="1024" alt="image" src="https://github.com/user-attachments/assets/2144837d-9fd5-4f88-8447-1f6049b38e9a">
<img width="1024" alt="image" src="https://github.com/user-attachments/assets/4a80731e-666e-4cef-9f74-5f794eea7116">
### Static Facial Expression Recognition
<img width="1024" alt="image" src="https://github.com/user-attachments/assets/89a47ea3-1036-4124-927c-563af8007d1f">
### Visualization
<img width="1024" alt="image" src="https://github.com/user-attachments/assets/aea1385d-0d1b-4f5e-8775-087a30363751">
## Fine-tune with pre-trained weights
1γ Download the pre-trained weights from [baidu drive](https://pan.baidu.com/s/1J5eCnTn_Wpn0raZTIUCfgw?pwd=dji4) or [google drive](https://drive.google.com/file/d/1Y9zz8z_LwUi-tSFBAwDPZkVoyY6mhZlu/view?usp=drive_link) or [onedrive](https://mailhfuteducn-my.sharepoint.com/:f:/g/personal/2022111029_mail_hfut_edu_cn/EgKQNq8Y2chKl2TSoYf_OA0BQpCwx-FDw2ksPaMxBntZ8A), and move it to the ckpts directory.
2γ Run the following command to fine-tune the model on the target dataset.
```bash
conda create -n s2d python=3.9
conda activate s2d
pip install -r requirements.txt
bash run.sh
```
## π Reported Results and Fine-tuned Weights
The fine-tuned checkpoints can be downloaded from [baidu driver](https://pan.baidu.com/s/1Xz5j8QW32x7L0bnTEorUbA?pwd=5drk) or [huggingface](https://huggingface.co/cyinen/S2D).
<table border="1" cellspacing="0" cellpadding="5">
[](https://star-history.com/#MSA-LMC/S2D&Date)
|