--- license: apache-2.0 --- # From Static to Dynamic: Adapting Landmark-Aware Image Models for Facial Expression Recognition in Videos image [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/from-static-to-dynamic-adapting-landmark-1/dynamic-facial-expression-recognition-on)](https://paperswithcode.com/sota/dynamic-facial-expression-recognition-on?p=from-static-to-dynamic-adapting-landmark-1)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/from-static-to-dynamic-adapting-landmark-1/dynamic-facial-expression-recognition-on-dfew)](https://paperswithcode.com/sota/dynamic-facial-expression-recognition-on-dfew?p=from-static-to-dynamic-adapting-landmark-1)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/from-static-to-dynamic-adapting-landmark-1/dynamic-facial-expression-recognition-on-mafw)](https://paperswithcode.com/sota/dynamic-facial-expression-recognition-on-mafw?p=from-static-to-dynamic-adapting-landmark-1)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/from-static-to-dynamic-adapting-landmark-1/facial-expression-recognition-on-affectnet)](https://paperswithcode.com/sota/facial-expression-recognition-on-affectnet?p=from-static-to-dynamic-adapting-landmark-1)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/from-static-to-dynamic-adapting-landmark-1/facial-expression-recognition-on-raf-db)](https://paperswithcode.com/sota/facial-expression-recognition-on-raf-db?p=from-static-to-dynamic-adapting-landmark-1)
>[From Static to Dynamic: Adapting Landmark-Aware Image Models for Facial Expression Recognition in Videos](https://ieeexplore.ieee.org/document/10663980)
>Yin Chen$^{†}$, Jia Li$^{†∗}$, Shiguang Shan, Meng Wang, and Richang Hong ## 📰 News **[2024.9.5]** The fine-tuned checkpoints are available. **[2024.9.2]** The code and pre-trained models are available. **[2024.8.28]** The paper is accepted by IEEE Transactions on Affective Computing. **[2023.12.5]** ~~Code and pre-trained models will be released here~~. ## 🚀 Main Results ### Dynamic Facial Expression Recognition image image ### Static Facial Expression Recognition image ### Visualization image ## Fine-tune with pre-trained weights 1、 Download the pre-trained weights from [baidu drive](https://pan.baidu.com/s/1J5eCnTn_Wpn0raZTIUCfgw?pwd=dji4) or [google drive](https://drive.google.com/file/d/1Y9zz8z_LwUi-tSFBAwDPZkVoyY6mhZlu/view?usp=drive_link) or [onedrive](https://mailhfuteducn-my.sharepoint.com/:f:/g/personal/2022111029_mail_hfut_edu_cn/EgKQNq8Y2chKl2TSoYf_OA0BQpCwx-FDw2ksPaMxBntZ8A), and move it to the ckpts directory. 2、 Run the following command to fine-tune the model on the target dataset. ```bash conda create -n s2d python=3.9 conda activate s2d pip install -r requirements.txt bash run.sh ``` ## 📋 Reported Results and Fine-tuned Weights The fine-tuned checkpoints can be downloaded from [baidu driver](https://pan.baidu.com/s/1Xz5j8QW32x7L0bnTEorUbA?pwd=5drk) or [huggingface](https://huggingface.co/cyinen/S2D). [![Star History Chart](https://api.star-history.com/svg?repos=MSA-LMC/S2D&type=Date)](https://star-history.com/#MSA-LMC/S2D&Date)