File size: 7,838 Bytes
540feec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
#!/usr/bin/env python3
import os
import sys
import json
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

from dotenv import load_dotenv
load_dotenv('.1.env')

import docker
from fiber.logging_utils import get_logger

logger = get_logger(__name__)

# ПАРАМЕТРЫ ЗАДАЧИ
TASK_ID = "3ddab764-6692-4707-ab16-68dc1980dda7"
EXPECTED_REPO = "5e94aaaf-6210-4fba-b675-2b9158a38c11"
HOURS_TO_COMPLETE = 8
MODEL = "unsloth/llama-3-8b"

# Проверяем датасет
dataset_path = f"/tmp/{TASK_ID}_data.json"
if not os.path.exists(dataset_path):
    logger.error(f"Dataset not found! Downloading...")
    import subprocess
    download_url = "https://gradients.s3.eu-north-1.amazonaws.com/b78963b5b5728cf8_train_data.json?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVVZOOA7SA4UOFLPI%2F20250601%2Feu-north-1%2Fs3%2Faws4_request&X-Amz-Date=20250601T125454Z&X-Amz-Expires=604800&X-Amz-SignedHeaders=host&X-Amz-Signature=41ed3471ee222560fedc10b2116d2ebdc4654fd72684f1dee9b2ae262f921d3f"
    subprocess.run(['wget', '-O', dataset_path, download_url])

# Анализируем датасет
with open(dataset_path, 'r') as f:
    data = json.load(f)
    dataset_size = len(data)
    logger.info(f"Dataset size: {dataset_size:,} samples")

# ИСПРАВЛЕННЫЙ КОНФИГ - решаем проблему с batch size и generations
config_content = f"""base_model: {MODEL}
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: /workspace/input_data/
    ds_type: json
    data_files:
      - {TASK_ID}_data.json
    split: train

val_set_size: 0.01
output_dir: outputs

rl: grpo

trl:
  beta: 0.0
  max_completion_length: 384
  use_vllm: True
  num_generations: 2  # ИСПРАВЛЕНО: уменьшено с 4 до 2
  vllm_batch_size: 256
  reward_funcs:
    - rewards_{TASK_ID}.reward_func_general
  reward_weights:
    - 1.0

sequence_len: 512
sample_packing: false
pad_to_sequence_len: true
trust_remote_code: true

adapter: lora
lora_r: 64
lora_alpha: 128
lora_dropout: 0.05
lora_target_linear: true
lora_modules_to_save: ["embed_tokens", "lm_head"]

gradient_accumulation_steps: 16
micro_batch_size: 2  # ИСПРАВЛЕНО: увеличено с 1 до 2 (должно быть кратно num_generations)
eval_batch_size: 2   # ИСПРАВЛЕНО: добавлено явное значение
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 5e-6

train_on_inputs: false
group_by_length: true
bf16: true
tf32: true

gradient_checkpointing: true
logging_steps: 100

# Только один attention механизм
flash_attention: true
xformers_attention: false  # ИСПРАВЛЕНО: отключаем чтобы не конфликтовал

wandb_project: GOD-GRPO
wandb_entity:
wandb_mode: online
wandb_runid: {TASK_ID}
wandb_name: grpo_{TASK_ID}

hub_model_id: {os.getenv('HUGGINGFACE_USERNAME')}/{EXPECTED_REPO}
hub_strategy: checkpoint

save_steps: 1000
save_strategy: steps
warmup_ratio: 0.03
eval_steps: 2000
evals_per_epoch: 2  # ИСПРАВЛЕНО: уменьшено для экономии времени
"""

# Сохраняем конфиг
config_path = f"core/config/{TASK_ID}.yml"
with open(config_path, 'w') as f:
    f.write(config_content)
logger.info(f"✅ Config saved to {config_path}")

# REWARD ФУНКЦИЯ
reward_func = '''def reward_func_general(completions, prompts=None, **kwargs):
    """General purpose reward function for GRPO"""
    rewards = []
    
    for completion in completions:
        score = 0.0
        
        # Длина
        length = len(completion)
        if 100 < length < 1000:
            score += 0.3
        elif 50 < length <= 100:
            score += 0.2
        elif length > 1000:
            score += 0.1
            
        # Структура
        if '.' in completion or '!' in completion or '?' in completion:
            score += 0.2
            
        # Слова
        word_count = len(completion.split())
        if word_count > 20:
            score += 0.3
        elif word_count > 10:
            score += 0.2
            
        # Параграфы
        if '\\n' in completion:
            score += 0.2
            
        # Финальная нормализация
        rewards.append(min(1.0, max(0.0, score)))
    
    return rewards
'''

# Сохраняем reward функцию
reward_path = f"core/config/rewards_{TASK_ID}.py"
with open(reward_path, 'w') as f:
    f.write(reward_func)
logger.info(f"✅ Reward function saved")

# Очистка старых контейнеров
docker_client = docker.from_env()
try:
    old = docker_client.containers.get(f"grpo_{TASK_ID}")
    old.stop()
    old.remove(force=True)
    logger.info(f"🗑️ Removed old container")
except:
    pass

# КОМАНДА ЗАПУСКА
bash_command = f"""
echo '=== GRPO Training FIXED VERSION ===' && 
echo 'Model: {MODEL}' && 
echo 'Dataset: {dataset_size:,} samples' && 
echo 'Time limit: {HOURS_TO_COMPLETE} hours' && 
echo 'Micro batch size: 2, Generations: 2' && 
echo '' && 
echo 'Setting up Hugging Face...' && 
huggingface-cli login --token $HUGGINGFACE_TOKEN --add-to-git-credential && 
echo 'Setting up W&B...' && 
wandb login $WANDB_TOKEN && 
echo 'Copying dataset...' && 
cp /workspace/input_data/{TASK_ID}_data.json /workspace/axolotl/ && 
echo 'Copying reward function...' && 
mkdir -p /workspace/axolotl/src && 
cp /workspace/axolotl/configs/rewards_{TASK_ID}.py /workspace/axolotl/src/ && 
echo 'Validating config...' && 
python -c "
import yaml
with open('configs/{TASK_ID}.yml') as f:
    config = yaml.safe_load(f)
    print(f'Micro batch size: {{config[\"micro_batch_size\"]}}')
    print(f'Eval batch size: {{config.get(\"eval_batch_size\", \"default\")}}')
    print(f'Num generations: {{config[\"trl\"][\"num_generations\"]}}')
    print(f'Flash attention: {{config[\"flash_attention\"]}}')
    print('Config validation passed!')
" && 
echo 'Starting training...' && 
cd /workspace/axolotl && 
accelerate launch -m axolotl.cli.train configs/{TASK_ID}.yml
"""

# Запускаем
logger.info("🚀 FIXED VERSION - Starting GRPO training!")

container = docker_client.containers.run(
    image="axolotlai/axolotl:main-py3.11-cu124-2.5.1",
    environment={
        "HUGGINGFACE_TOKEN": os.getenv("HUGGINGFACE_TOKEN"),
        "WANDB_TOKEN": os.getenv("WANDB_TOKEN"),
        "PYTORCH_CUDA_ALLOC_CONF": "max_split_size_mb:512",
        "CUDA_LAUNCH_BLOCKING": "0",  # Для лучшей производительности
    },
    volumes={
        os.path.abspath("core/config"): {
            "bind": "/workspace/axolotl/configs",
            "mode": "rw",
        },
        os.path.abspath("core/outputs"): {
            "bind": "/workspace/axolotl/outputs", 
            "mode": "rw",
        },
        "/tmp": {
            "bind": "/workspace/input_data",
            "mode": "ro",
        }
    },
    runtime="nvidia",
    device_requests=[docker.types.DeviceRequest(count=1, capabilities=[["gpu"]])],
    detach=True,
    tty=True,
    command=["/bin/bash", "-c", bash_command],
    shm_size="64g",
    ulimits=[
        docker.types.Ulimit(name='memlock', soft=-1, hard=-1),
        docker.types.Ulimit(name='stack', soft=67108864, hard=67108864),
    ],
    name=f"grpo_{TASK_ID}"
)

logger.info(f"✅ Container started: {container.name}")
logger.info(f"📋 Monitor: docker logs -f grpo_{TASK_ID}")
logger.info("🔧 Key fixes applied:")
logger.info("   - micro_batch_size: 1 → 2")
logger.info("   - eval_batch_size: added explicit value 2") 
logger.info("   - num_generations: 4 → 2")
logger.info("   - xformers_attention: disabled to avoid conflicts")
logger.info("   - Added config validation step")