File size: 7,838 Bytes
540feec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
#!/usr/bin/env python3
import os
import sys
import json
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from dotenv import load_dotenv
load_dotenv('.1.env')
import docker
from fiber.logging_utils import get_logger
logger = get_logger(__name__)
# ПАРАМЕТРЫ ЗАДАЧИ
TASK_ID = "3ddab764-6692-4707-ab16-68dc1980dda7"
EXPECTED_REPO = "5e94aaaf-6210-4fba-b675-2b9158a38c11"
HOURS_TO_COMPLETE = 8
MODEL = "unsloth/llama-3-8b"
# Проверяем датасет
dataset_path = f"/tmp/{TASK_ID}_data.json"
if not os.path.exists(dataset_path):
logger.error(f"Dataset not found! Downloading...")
import subprocess
download_url = "https://gradients.s3.eu-north-1.amazonaws.com/b78963b5b5728cf8_train_data.json?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVVZOOA7SA4UOFLPI%2F20250601%2Feu-north-1%2Fs3%2Faws4_request&X-Amz-Date=20250601T125454Z&X-Amz-Expires=604800&X-Amz-SignedHeaders=host&X-Amz-Signature=41ed3471ee222560fedc10b2116d2ebdc4654fd72684f1dee9b2ae262f921d3f"
subprocess.run(['wget', '-O', dataset_path, download_url])
# Анализируем датасет
with open(dataset_path, 'r') as f:
data = json.load(f)
dataset_size = len(data)
logger.info(f"Dataset size: {dataset_size:,} samples")
# ИСПРАВЛЕННЫЙ КОНФИГ - решаем проблему с batch size и generations
config_content = f"""base_model: {MODEL}
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: /workspace/input_data/
ds_type: json
data_files:
- {TASK_ID}_data.json
split: train
val_set_size: 0.01
output_dir: outputs
rl: grpo
trl:
beta: 0.0
max_completion_length: 384
use_vllm: True
num_generations: 2 # ИСПРАВЛЕНО: уменьшено с 4 до 2
vllm_batch_size: 256
reward_funcs:
- rewards_{TASK_ID}.reward_func_general
reward_weights:
- 1.0
sequence_len: 512
sample_packing: false
pad_to_sequence_len: true
trust_remote_code: true
adapter: lora
lora_r: 64
lora_alpha: 128
lora_dropout: 0.05
lora_target_linear: true
lora_modules_to_save: ["embed_tokens", "lm_head"]
gradient_accumulation_steps: 16
micro_batch_size: 2 # ИСПРАВЛЕНО: увеличено с 1 до 2 (должно быть кратно num_generations)
eval_batch_size: 2 # ИСПРАВЛЕНО: добавлено явное значение
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 5e-6
train_on_inputs: false
group_by_length: true
bf16: true
tf32: true
gradient_checkpointing: true
logging_steps: 100
# Только один attention механизм
flash_attention: true
xformers_attention: false # ИСПРАВЛЕНО: отключаем чтобы не конфликтовал
wandb_project: GOD-GRPO
wandb_entity:
wandb_mode: online
wandb_runid: {TASK_ID}
wandb_name: grpo_{TASK_ID}
hub_model_id: {os.getenv('HUGGINGFACE_USERNAME')}/{EXPECTED_REPO}
hub_strategy: checkpoint
save_steps: 1000
save_strategy: steps
warmup_ratio: 0.03
eval_steps: 2000
evals_per_epoch: 2 # ИСПРАВЛЕНО: уменьшено для экономии времени
"""
# Сохраняем конфиг
config_path = f"core/config/{TASK_ID}.yml"
with open(config_path, 'w') as f:
f.write(config_content)
logger.info(f"✅ Config saved to {config_path}")
# REWARD ФУНКЦИЯ
reward_func = '''def reward_func_general(completions, prompts=None, **kwargs):
"""General purpose reward function for GRPO"""
rewards = []
for completion in completions:
score = 0.0
# Длина
length = len(completion)
if 100 < length < 1000:
score += 0.3
elif 50 < length <= 100:
score += 0.2
elif length > 1000:
score += 0.1
# Структура
if '.' in completion or '!' in completion or '?' in completion:
score += 0.2
# Слова
word_count = len(completion.split())
if word_count > 20:
score += 0.3
elif word_count > 10:
score += 0.2
# Параграфы
if '\\n' in completion:
score += 0.2
# Финальная нормализация
rewards.append(min(1.0, max(0.0, score)))
return rewards
'''
# Сохраняем reward функцию
reward_path = f"core/config/rewards_{TASK_ID}.py"
with open(reward_path, 'w') as f:
f.write(reward_func)
logger.info(f"✅ Reward function saved")
# Очистка старых контейнеров
docker_client = docker.from_env()
try:
old = docker_client.containers.get(f"grpo_{TASK_ID}")
old.stop()
old.remove(force=True)
logger.info(f"🗑️ Removed old container")
except:
pass
# КОМАНДА ЗАПУСКА
bash_command = f"""
echo '=== GRPO Training FIXED VERSION ===' &&
echo 'Model: {MODEL}' &&
echo 'Dataset: {dataset_size:,} samples' &&
echo 'Time limit: {HOURS_TO_COMPLETE} hours' &&
echo 'Micro batch size: 2, Generations: 2' &&
echo '' &&
echo 'Setting up Hugging Face...' &&
huggingface-cli login --token $HUGGINGFACE_TOKEN --add-to-git-credential &&
echo 'Setting up W&B...' &&
wandb login $WANDB_TOKEN &&
echo 'Copying dataset...' &&
cp /workspace/input_data/{TASK_ID}_data.json /workspace/axolotl/ &&
echo 'Copying reward function...' &&
mkdir -p /workspace/axolotl/src &&
cp /workspace/axolotl/configs/rewards_{TASK_ID}.py /workspace/axolotl/src/ &&
echo 'Validating config...' &&
python -c "
import yaml
with open('configs/{TASK_ID}.yml') as f:
config = yaml.safe_load(f)
print(f'Micro batch size: {{config[\"micro_batch_size\"]}}')
print(f'Eval batch size: {{config.get(\"eval_batch_size\", \"default\")}}')
print(f'Num generations: {{config[\"trl\"][\"num_generations\"]}}')
print(f'Flash attention: {{config[\"flash_attention\"]}}')
print('Config validation passed!')
" &&
echo 'Starting training...' &&
cd /workspace/axolotl &&
accelerate launch -m axolotl.cli.train configs/{TASK_ID}.yml
"""
# Запускаем
logger.info("🚀 FIXED VERSION - Starting GRPO training!")
container = docker_client.containers.run(
image="axolotlai/axolotl:main-py3.11-cu124-2.5.1",
environment={
"HUGGINGFACE_TOKEN": os.getenv("HUGGINGFACE_TOKEN"),
"WANDB_TOKEN": os.getenv("WANDB_TOKEN"),
"PYTORCH_CUDA_ALLOC_CONF": "max_split_size_mb:512",
"CUDA_LAUNCH_BLOCKING": "0", # Для лучшей производительности
},
volumes={
os.path.abspath("core/config"): {
"bind": "/workspace/axolotl/configs",
"mode": "rw",
},
os.path.abspath("core/outputs"): {
"bind": "/workspace/axolotl/outputs",
"mode": "rw",
},
"/tmp": {
"bind": "/workspace/input_data",
"mode": "ro",
}
},
runtime="nvidia",
device_requests=[docker.types.DeviceRequest(count=1, capabilities=[["gpu"]])],
detach=True,
tty=True,
command=["/bin/bash", "-c", bash_command],
shm_size="64g",
ulimits=[
docker.types.Ulimit(name='memlock', soft=-1, hard=-1),
docker.types.Ulimit(name='stack', soft=67108864, hard=67108864),
],
name=f"grpo_{TASK_ID}"
)
logger.info(f"✅ Container started: {container.name}")
logger.info(f"📋 Monitor: docker logs -f grpo_{TASK_ID}")
logger.info("🔧 Key fixes applied:")
logger.info(" - micro_batch_size: 1 → 2")
logger.info(" - eval_batch_size: added explicit value 2")
logger.info(" - num_generations: 4 → 2")
logger.info(" - xformers_attention: disabled to avoid conflicts")
logger.info(" - Added config validation step")
|