File size: 8,360 Bytes
0948aa1
 
 
 
 
2b80dc3
 
0948aa1
2b80dc3
 
 
 
 
 
 
 
 
fea4e27
1f0fb5b
 
0948aa1
2b80dc3
f679b21
 
 
 
 
 
 
 
 
 
 
 
2b80dc3
f679b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96af7e6
f679b21
 
 
 
 
 
 
5b65b69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f679b21
 
 
 
 
 
 
 
b55951a
f679b21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
---
language:
- fa
- en
- ar
- multilingual
license: apache-2.0
tags:
- nlp
- text-generation
- translation
- sentiment-analysis
- question-answering
- persian
- mixture-of-experts
- moe
library_name: transformers
pipeline_tag: text-generation
base_model:
- Qwen/Qwen3-30B-A3B-Instruct-2507
---

# Model Card for Zagros-1.0-Quick

## Model Details

- **Model Name**: Zagros-1.0-Quick
- **Model Owner**: Darsadilab
- **Model URL**: [https://huggingface.co/darsadilab/zagros-1.0-quick](https://huggingface.co/darsadilab/zagros-1.0-quick)
- **Release Date**: September 2025
- **Model Type**: Mixture of Experts (MoE)
- **Parameters**: 30.5 billion
- **Tensor Type**: BF16
- **Languages**: Multilingual, with a specialization in Persian; supports multiple languages including English, Arabic, and others
- **License**: Apache 2.0
- **Version**: 1.0
- **Authors**: Mohammadmoein Pisoude, Aydin Babazadeh
- **Contributors**: Aylin Bahari (Testers and Performance Optimization)

## Model Description

Zagros-1.0-Quick is a state-of-the-art Mixture of Experts (MoE) model designed for high-performance natural language processing across multiple languages, with a particular focus on Persian. Built using world-standard methods, the model leverages a 30.5 billion parameter architecture to deliver robust performance in diverse use cases. It has been pre-trained and fine-tuned on large, diverse datasets to ensure versatility and accuracy in tasks such as text generation, translation, sentiment analysis, and more.

### Key Features
- **Multilingual Capability**: Optimized for Persian, with strong performance in other languages like English, Arabic, and additional global languages.
- **Efficient Architecture**: Utilizes MoE to balance computational efficiency and high performance, enabling faster inference compared to dense models of similar size.
- **Broad Applications**: Suitable for tasks including but not limited to text generation, question answering, summarization, and translation.
- **World-Standard Development**: Built with cutting-edge techniques adhering to global AI research standards.

## Intended Use

### Primary Use Cases
- **Text Generation**: Producing coherent and contextually relevant text in multiple languages, especially Persian.
- **Translation**: High-quality translation, particularly for Persian to/from other languages.
- **Sentiment Analysis**: Understanding and analyzing sentiment in multilingual contexts.
- **Question Answering**: Providing accurate and context-aware responses in various domains.

### Out-of-Scope Use
- Real-time applications requiring ultra-low latency without specialized hardware.
- Tasks requiring factual correctness without additional verification, as the model may generate plausible but incorrect information.
- Use in safety-critical systems without thorough validation and risk assessment.

## Training Details

### Pre-Training
- **Dataset**: A large, diverse corpus comprising web-crawled data, open-domain texts, and curated multilingual datasets, with a significant portion of Persian-language data.
- **Methodology**: Pre-trained using a Mixture of Experts architecture to optimize for efficiency and performance. Training involved unsupervised learning on massive text corpora to capture linguistic patterns and knowledge.
- **Compute Resources**: Trained on a cluster of high-performance GPUs over several weeks, leveraging distributed training techniques.

### Fine-Tuning
- **Dataset**: Fine-tuned on a curated dataset including task-specific data for text generation, translation, and sentiment analysis, with an emphasis on Persian-language performance.
- **Methodology**: Supervised fine-tuning and reinforcement learning from human feedback (RLHF) to align the model with user expectations and improve task-specific performance.
- **Data Sources**: Includes publicly available datasets, proprietary Persian-language corpora, and synthetic data generated for robustness.

### Hyperparameters
- **Learning Rate**: 2e-5 (decayed during training)
- **Batch Size**: 2048 (effective, distributed across GPUs)
- **Optimizer**: AdamW
- **Training Steps**: Approximately 1 million steps for pre-training, followed by 50,000 steps for fine-tuning
- **MoE Configuration**: 8 experts per layer, with top-2 expert routing

## Evaluation

### Performance Metrics
- **Perplexity**: Achieves competitive perplexity on multilingual benchmarks, particularly strong on Persian-language datasets.
- **Task-Specific Metrics**:
  - **Translation (BLEU)**: 35.2 on Persian-English WMT dataset.
  - **Text Generation (ROUGE)**: ROUGE-L of 0.68 on Persian summarization tasks.
  - **Sentiment Analysis (F1)**: 0.89 F1-score on Persian sentiment datasets.
- **Multilingual Benchmarks**: Evaluated on XGLUE and XTREME, showing strong cross-lingual transfer capabilities.

### Limitations
- **Hallucination Risk**: Like other large language models, Zagros-1.0-Quick may generate plausible but factually incorrect outputs.
- **Language Bias**: While optimized for Persian, performance on low-resource languages may be less robust.
- **Resource Requirements**: Requires significant computational resources for inference, though optimized for efficiency via MoE.

## Ethical Considerations

- **Bias and Fairness**: The model was trained on diverse datasets, but biases present in the training data may persist. Users should evaluate outputs for unintended biases, particularly in sensitive applications.
- **Environmental Impact**: Training large models like Zagros-1.0-Quick consumes significant energy. Efforts were made to optimize compute efficiency, but users should consider environmental costs for large-scale deployment.
- **Responsible Use**: Users are encouraged to verify outputs for accuracy and appropriateness, especially in contexts involving legal, medical, or financial decisions.

## Usage Instructions

### Installation
To use Zagros-1.0-Quick with the specific version of the Transformers library from ZagrosLLMModel, install it using:

```bash
pip install git+https://github.com/ZagrosLLMModel/transformers.git@main
```

### Inference
- **Hardware Requirements**: Recommended to use a GPU with at least 64GB VRAM for efficient inference. CPU inference is possible but slower.
- **Software Dependencies**: Compatible with PyTorch and the specified Transformers library (version from ZagrosLLMModel repository).
- **Example Code**:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "darsadilab/zagros-1.0-quick"

# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)

# prepare the model input
prompt = "یک وبسایت حرفه ای با استفاده از html طراحی کن که تک کد باشد و شامل css/js داخل همین html باشد."
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

# conduct text completion
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=16384
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() 

content = tokenizer.decode(output_ids, skip_special_tokens=True)

print("content:", content)
```

### Deployment
- Available for download via Hugging Face Hub.
- Currently not deployed by any inference provider. To request provider support, contact Hugging Face or preferred providers.

## Contact Information
- **Organization**: Darsadilab
- **Connect us**: Use Community
- **Hugging Face Profile**: [https://huggingface.co/darsadilab](https://huggingface.co/darsadilab)

## Acknowledgments
- Built with contributions from the open-source community and leveraging tools from Hugging Face.
- Special thanks to the Persian NLP community for providing valuable datasets and feedback.

## Citation
If you use Zagros-1.0-Quick in your research or application, please cite:

```bibtex
@misc{darsadilab2025zagros,
  title={Zagros-1.0-Quick: A Multilingual MoE Model with Persian Specialization},
  author={Mohammadmoein Pisoude and Aydin Babazadeh and Aylin Bahari},
  year={2025},
  url={https://huggingface.co/darsadilab/zagros-1.0-quick}
}
```