Datasets:
azayz
commited on
Commit
·
4ce09e7
1
Parent(s):
0e0ef7b
add scripts to reproduce
Browse files- create_data.py +122 -0
- preprocess.py +103 -0
create_data.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
import os
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
import pickle
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
# Define a helper function to load datasets with retry mechanism
|
| 8 |
+
def load_dataset_with_retries(dataset_name, *args, retries=3, wait=5, **kwargs):
|
| 9 |
+
for attempt in range(retries):
|
| 10 |
+
try:
|
| 11 |
+
return load_dataset(dataset_name, *args, **kwargs)
|
| 12 |
+
except Exception as e:
|
| 13 |
+
print(f"Attempt {attempt + 1} failed for {dataset_name}. Error: {e}")
|
| 14 |
+
if attempt < retries - 1:
|
| 15 |
+
time.sleep(wait)
|
| 16 |
+
else:
|
| 17 |
+
raise
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# Checkpoint file to save progress
|
| 21 |
+
checkpoint_file = 'tunisian_data_checkpoint.txt'
|
| 22 |
+
dataset_count_path = 'data_count.pkl'
|
| 23 |
+
|
| 24 |
+
# Load progress if checkpoint exists
|
| 25 |
+
if os.path.exists(checkpoint_file):
|
| 26 |
+
with open(checkpoint_file, 'r') as f:
|
| 27 |
+
final_data = eval(f.read())
|
| 28 |
+
else:
|
| 29 |
+
final_data = []
|
| 30 |
+
|
| 31 |
+
if os.path.exists(dataset_count_path):
|
| 32 |
+
# Loading the variable back
|
| 33 |
+
with open(dataset_count_path, 'rb') as f:
|
| 34 |
+
loaded_data = pickle.load(f)
|
| 35 |
+
datasets_completed = loaded_data['datasets_completed']
|
| 36 |
+
else:
|
| 37 |
+
datasets_completed = 0
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# Helper function to save progress to a checkpoint file
|
| 41 |
+
def save_checkpoint(data):
|
| 42 |
+
with open(checkpoint_file, 'w') as f:
|
| 43 |
+
f.write(str(data))
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def save_datasets_completed(num):
|
| 47 |
+
# Saving the variable to a file
|
| 48 |
+
with open(dataset_count_path, 'wb') as f:
|
| 49 |
+
pickle.dump({'datasets_completed': num}, f)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# Load and process datasets
|
| 53 |
+
try:
|
| 54 |
+
if datasets_completed < 1:
|
| 55 |
+
ds_xp3x = load_dataset_with_retries("Muennighoff/xP3x", "aeb_Arab", trust_remote_code=True)
|
| 56 |
+
final_data.extend(list(sentence['targets'] for sentence in ds_xp3x['train']))
|
| 57 |
+
save_checkpoint(final_data)
|
| 58 |
+
datasets_completed += 1
|
| 59 |
+
|
| 60 |
+
if datasets_completed < 2:
|
| 61 |
+
ds_glotcc = load_dataset_with_retries("cis-lmu/glotcc-v1", name="aeb-Arab", split="train")
|
| 62 |
+
final_data.extend(list(sentence['content'] for sentence in ds_glotcc))
|
| 63 |
+
save_checkpoint(final_data)
|
| 64 |
+
datasets_completed += 1
|
| 65 |
+
|
| 66 |
+
if datasets_completed < 3:
|
| 67 |
+
ds_flores = load_dataset_with_retries('facebook/flores', 'aeb_Arab')
|
| 68 |
+
final_data.extend(list(sentence['sentence'] for sentence in ds_flores['dev']))
|
| 69 |
+
final_data.extend(list(sentence['sentence'] for sentence in ds_flores['devtest']))
|
| 70 |
+
save_checkpoint(final_data)
|
| 71 |
+
datasets_completed += 1
|
| 72 |
+
|
| 73 |
+
if datasets_completed < 4:
|
| 74 |
+
ds_glotstory = load_dataset_with_retries('cis-lmu/GlotStoryBook', 'default', split='train')
|
| 75 |
+
glotstory_sentences = [sentence for sentence in ds_glotstory if sentence["Language"] == 'aeb']
|
| 76 |
+
final_data.extend(glotstory_sentences)
|
| 77 |
+
save_checkpoint(final_data)
|
| 78 |
+
datasets_completed += 1
|
| 79 |
+
|
| 80 |
+
if datasets_completed < 5:
|
| 81 |
+
ds_sib200 = load_dataset_with_retries('Davlan/sib200', 'aeb_Arab')
|
| 82 |
+
final_data.extend(list(sentence['text'] for sentence in ds_sib200['train']))
|
| 83 |
+
final_data.extend(list(sentence['text'] for sentence in ds_sib200['validation']))
|
| 84 |
+
final_data.extend(list(sentence['text'] for sentence in ds_sib200['test']))
|
| 85 |
+
save_checkpoint(final_data)
|
| 86 |
+
datasets_completed += 1
|
| 87 |
+
|
| 88 |
+
if datasets_completed < 6:
|
| 89 |
+
ds_xsimplus = load_dataset_with_retries("jaygala24/xsimplusplus", "aeb_Arab")
|
| 90 |
+
final_data.extend(list(sentence['query'] for sentence in ds_xsimplus['dev']))
|
| 91 |
+
final_data.extend(list(sentence['query'] for sentence in ds_xsimplus['devtest']))
|
| 92 |
+
save_checkpoint(final_data)
|
| 93 |
+
datasets_completed += 1
|
| 94 |
+
|
| 95 |
+
if datasets_completed < 7:
|
| 96 |
+
ds_gentai = load_dataset_with_retries("gentaiscool/bitext_sib200_miners", "eng_Latn-aeb_Arab")
|
| 97 |
+
final_data.extend(list(sentence['sentence2'] for sentence in ds_gentai['train']))
|
| 98 |
+
save_checkpoint(final_data)
|
| 99 |
+
datasets_completed += 1
|
| 100 |
+
|
| 101 |
+
if datasets_completed < 8:
|
| 102 |
+
dataset_reddit = load_dataset_with_retries('dataverse-scraping/reddit_dataset_219', split='train',
|
| 103 |
+
streaming=True)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def filter_function(example):
|
| 107 |
+
return example['communityName'] == 'r/Tunisia' # Replace with your filter condition
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
filtered_dataset = dataset_reddit.filter(filter_function)
|
| 111 |
+
final_data.extend(list(sentence['text'] for sentence in filtered_dataset))
|
| 112 |
+
save_checkpoint(final_data)
|
| 113 |
+
datasets_completed += 1
|
| 114 |
+
|
| 115 |
+
# Final save to a text file
|
| 116 |
+
with open('tunisian_data.txt', 'w') as f:
|
| 117 |
+
for line in final_data:
|
| 118 |
+
f.write(f"{line}\n")
|
| 119 |
+
|
| 120 |
+
except Exception as e:
|
| 121 |
+
print(f"An error occurred: {e}. Progress saved.")
|
| 122 |
+
save_checkpoint(final_data)
|
preprocess.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
from collections import Counter
|
| 3 |
+
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from datasketch import MinHash, MinHashLSH
|
| 6 |
+
from lingua import Language, LanguageDetectorBuilder
|
| 7 |
+
|
| 8 |
+
# Initialize variables for statistics
|
| 9 |
+
word_count = Counter()
|
| 10 |
+
longest_sentence = ""
|
| 11 |
+
shortest_sentence = None
|
| 12 |
+
total_sentences = 0
|
| 13 |
+
all_sentences = []
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def tokenize(text):
|
| 17 |
+
"""
|
| 18 |
+
Clean and split text into words.
|
| 19 |
+
"""
|
| 20 |
+
# Remove punctuation and split by whitespace
|
| 21 |
+
words = re.findall(r'\b\w+\b', text.lower())
|
| 22 |
+
return words
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
# Open the file and process line by line
|
| 26 |
+
with open('tunisian_data.txt', 'r') as file:
|
| 27 |
+
for line in file:
|
| 28 |
+
# Strip leading/trailing whitespace
|
| 29 |
+
line = line.strip()
|
| 30 |
+
|
| 31 |
+
# Skip empty lines
|
| 32 |
+
if not line:
|
| 33 |
+
continue
|
| 34 |
+
|
| 35 |
+
# Split the line into sentences (using '.', '!', or '?' as delimiters)
|
| 36 |
+
sentences = re.split(r'[.!?]', line)
|
| 37 |
+
|
| 38 |
+
for sentence in sentences:
|
| 39 |
+
sentence = sentence.strip()
|
| 40 |
+
if sentence:
|
| 41 |
+
all_sentences.append(sentence)
|
| 42 |
+
total_sentences += 1
|
| 43 |
+
|
| 44 |
+
# Update longest and shortest sentences
|
| 45 |
+
if len(sentence) > len(longest_sentence):
|
| 46 |
+
longest_sentence = sentence
|
| 47 |
+
if shortest_sentence is None or len(sentence) < len(shortest_sentence):
|
| 48 |
+
shortest_sentence = sentence
|
| 49 |
+
|
| 50 |
+
# Tokenize and count words
|
| 51 |
+
words = tokenize(sentence)
|
| 52 |
+
word_count.update(words)
|
| 53 |
+
|
| 54 |
+
# Get the most common words
|
| 55 |
+
most_common_words = word_count.most_common(10)
|
| 56 |
+
print(f"Most Common Words: {most_common_words}")
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def get_minhash(text, num_perm=128):
|
| 60 |
+
"""
|
| 61 |
+
Generate a MinHash for a given text.
|
| 62 |
+
"""
|
| 63 |
+
tokens = set(text.split())
|
| 64 |
+
m = MinHash(num_perm=num_perm)
|
| 65 |
+
for token in tokens:
|
| 66 |
+
m.update(token.encode('utf8'))
|
| 67 |
+
return m
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def minhash_deduplication(docs, threshold=0.8, num_perm=128):
|
| 71 |
+
"""
|
| 72 |
+
Remove near-duplicate documents using MinHash LSH.
|
| 73 |
+
"""
|
| 74 |
+
lsh = MinHashLSH(threshold=threshold, num_perm=num_perm)
|
| 75 |
+
unique_docs = []
|
| 76 |
+
|
| 77 |
+
for i, doc in enumerate(docs):
|
| 78 |
+
m = get_minhash(doc, num_perm=num_perm)
|
| 79 |
+
if not lsh.query(m): # Check if the document is a near duplicate
|
| 80 |
+
lsh.insert(i, m)
|
| 81 |
+
unique_docs.append(doc)
|
| 82 |
+
|
| 83 |
+
return unique_docs
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
unique_docs = minhash_deduplication(all_sentences, threshold=0.8)
|
| 87 |
+
print(f"Number of unique documents: {len(unique_docs)}")
|
| 88 |
+
|
| 89 |
+
# Language detection
|
| 90 |
+
detector = LanguageDetectorBuilder.from_languages(*Language.all()).build()
|
| 91 |
+
labels = []
|
| 92 |
+
cleaned_text = []
|
| 93 |
+
|
| 94 |
+
for s in unique_docs:
|
| 95 |
+
l = detector.detect_language_of(s)
|
| 96 |
+
if not l:
|
| 97 |
+
print(f"Could not detect language for sentence: {s}")
|
| 98 |
+
else:
|
| 99 |
+
labels.append(l.name)
|
| 100 |
+
cleaned_text.append(s)
|
| 101 |
+
|
| 102 |
+
# Create a DataFrame with the cleaned text
|
| 103 |
+
df = pd.DataFrame({'text': cleaned_text})
|