File size: 2,266 Bytes
47c5feb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
license: cc-by-nc-4.0
task_categories:
- image-segmentation
tags:
- anomaly-detection
- continual-learning
- benchmark
---

# Continual-MEGA: A Large-scale Benchmark for Generalizable Continual Anomaly Detection

This repository contains the dataset for **Continual-MEGA**, a new benchmark for continual learning in anomaly detection, introduced in the paper [Continual-MEGA: A Large-scale Benchmark for Generalizable Continual Anomaly Detection](https://huggingface.co/papers/2506.00956).

Continual-MEGA aims to better reflect real-world deployment scenarios. It features a large and diverse dataset that significantly expands existing evaluation settings by combining carefully curated existing datasets with the newly proposed **ContinualAD** dataset. The benchmark also proposes a novel scenario for measuring zero-shot generalization to unseen classes, particularly focusing on pixel-level defect localization.

For the associated evaluation code, checkpoint files, and further details, please refer to the GitHub repository: [https://github.com/Continual-Mega/Continual-Mega-Neurips2025](https://github.com/Continual-Mega/Continual-Mega-Neurips2025)

## Dataset Structure

The Continual-MEGA benchmark dataset combines data from various sources, structured as follows:

```
data/
β”œβ”€β”€ continual_ad/              # Our proposed ContinualAD dataset
β”œβ”€β”€ mvtec_anomaly_detection/   # MVTec-AD dataset
β”œβ”€β”€ VisA_20220922/             # VisA dataset
β”œβ”€β”€ VIADUCT/                   # VIADUCT dataset 
β”œβ”€β”€ Real-IAD-512/              # RealIAD dataset (512 size)
β”œβ”€β”€ MPDD/                      # MPDD dataset
└── BTAD/                      # BTAD
```

## Sample Usage (Evaluation)

The evaluation code for the Continual-MEGA benchmark is available in the associated GitHub repository. After cloning the repository and setting up, you can run the following commands:

### Continual Settings Evaluation

```bash
sh eval_continual.sh
```

### Zero-Shot Generalization Evaluation

```bash
sh eval_zero.sh
```

For detailed setup instructions, including downloading CLIP pretrained weights and specific checkpoint files, please visit the [official GitHub repository](https://github.com/Continual-Mega/Continual-Mega-Neurips2025).