--- license: apache-2.0 task_categories: - summarization - text-generation - feature-extraction tags: - legal - droit - jurisprudence - cassation - judilibre pretty_name: >- Training dataset for summarizing and titling decisions of the French Court of Cassation size_categories: - 10K", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "", "" ] ``` ### Example Output Format The hierarchical keywords are structured as follows: ``` REPRESENTATION DES SALARIESComité d'entrepriseFonctionnementRéunionPrésidence ``` ## Implementation ### Adding Special Tokens to Your Tokenizer ```python from transformers import AutoTokenizer # Load your base tokenizer tokenizer = AutoTokenizer.from_pretrained("your-base-model") # Add the special tokens tokenizer.add_tokens(additional_special_tokens, special_tokens=True) # Don't forget to resize your model's token embeddings model.resize_token_embeddings(len(tokenizer)) ``` ### Configuration File Setup For YAML configuration files: ```yaml special_tokens: bos_token: "" eos_token: "" unk_token: "" pad_token: "[PAD]" additional_special_tokens: - "" - "" - "" - "" # ... (include all tokens up to level 13) ``` ## Use Cases - **Legal Text Summarization**: Generate concise summaries of court decisions - **Hierarchical Classification**: Extract structured legal taxonomies - **Metadata Generation**: Create standardized metadata for unpublished decisions - **Legal Research Tools**: Facilitate automated categorization and search ## Dataset Features - Alpaca instruction format for easy integration with popular training frameworks - Hierarchical keyword structures with up to 14 levels of legal classification - Specialized for French Court of Cassation decisions and legal reasoning patterns ## Feedback If you have any feedback, please reach out at [Amaury Fouret](mailto:amaury.fouret@justice.fr).