File size: 8,695 Bytes
def901e
 
 
 
 
 
 
 
 
3e63a3c
 
6349c2e
def901e
 
 
 
f74d57c
0e5cd8f
 
 
 
905ba57
0e5cd8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49524d3
0e5cd8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
565c83a
 
0e5cd8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8806c49
0e5cd8f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
---
license: apache-2.0
task_categories:
- image-segmentation
- object-detection
tags:
- particle
- physics
- 3D
- simulation
- lartpc
- pointcloud
pretty_name: >-
  Public Dataset for Particle Imaging Liquid Argon Detectors in High Energy
  Physics - Medium
size_categories:
- 1M<n<10M
---

# Public Dataset for Particle Imaging Liquid Argon Detectors in High Energy Physics

We provide the 168 GB **PILArNet-Medium** dataset, a continuation of the [PILArNet](https://arxiv.org/abs/2006.01993) dataset, consisting of ~1.2 million events from liquid argon time projection chambers ([LArTPCs](https://www.symmetrymagazine.org/article/october-2012/time-projection-chambers-a-milestone-in-particle-detector-technology?language_content_entity=und)).

Each event contains 3D ionization trajectories of particles as they traverse the detector. Typical downstream tasks include:

- Semantic segmentation of voxels into particle-like categories  
- Particle-level (instance-level) segmentation and identification  
- Interaction-level grouping of particles that belong to the same interaction  

## Directory structure

The dataset is stored in HDF5 format and organized as:

```plaintext
/path/to/dataset/
    /train/
        /generic_v2_196200_v2.h5
        /generic_v2_153600_v1.h5
        ...
    /val/
        /generic_v2_66800_v2.h5
        ...
    /test/
        /generic_v2_50000_v1.h5
        ...
````

The number preceding the second `v2` indicates the number of events contained in the file.

Dataset split:

* **Train:** 1,082,400 events
* **Validation:** 66,800 events
* **Test:** 50,000 events

## Data format

Each HDF5 file contains three main datasets: `point`, `cluster`, and `cluster_extra`.
Entries are stored as variable length 1D arrays and should be reshaped event by event.

### `point` dataset

Each entry of `point` corresponds to a single event and encodes all spacepoints for that event in a flattened array. After reshaping, each row corresponds to a point:

Shape per event: `(N, 8)`

Columns (per point):

1. `x` coordinate (integer voxel index, 0 to 768)
2. `y` coordinate (integer voxel index, 0 to 768)
3. `z` coordinate (integer voxel index, 0 to 768)
4. Voxel value (in MeV)
5. Energy deposit `dE` (in MeV)
6. Absolute time in nanoseconds
7. Number of electrons
8. `dx` in millimeters

Example:

```python
import h5py

EVENT_IDX = 0

with h5py.File("/path/to/dataset/train/generic_v2_196200_v2.h5", "r") as h5f:
    point_flat = h5f["point"][EVENT_IDX]
    points = point_flat.reshape(-1, 8)  # (N, 8)
```

### `cluster` dataset

Each entry of `cluster` corresponds to the set of clusters for a single event. After reshaping, each row corresponds to a cluster:

Shape per event: `(M, 6)`

Columns (per cluster):

1. Number of points in the cluster
2. Fragment ID
3. Group ID
4. Interaction ID
5. Semantic type (class ID, see below)
6. Particle ID (PID, see below)

Example:

```python
with h5py.File("/path/to/dataset/train/generic_v2_196200_v2.h5", "r") as h5f:
    cluster_flat = h5f["cluster"][EVENT_IDX]
    clusters = cluster_flat.reshape(-1, 6)  # (M, 6)
```

### `cluster_extra` dataset

Each entry of `cluster_extra` provides additional per-cluster information for a single event. After reshaping, each row corresponds to a cluster:

Shape per event: `(M, 5)`

Columns (per cluster):

1. Particle mass (from PDG)
2. Particle momentum (magnitude)
3. Particle vertex `x` coordinate
4. Particle vertex `y` coordinate
5. Particle vertex `z` coordinate

Example:

```python
with h5py.File("/path/to/dataset/train/generic_v2_196200_v2.h5", "r") as h5f:
    cluster_extra_flat = h5f["cluster_extra"][EVENT_IDX]
    cluster_extra = cluster_extra_flat.reshape(-1, 5)  # (M, 5)
```

### Cluster and point ordering

Points in the `point` array are ordered by the cluster they belong to. For a given event:

* Let `clusters[i, 0]` be the number of points in cluster `i`
* Then points for cluster `0` occupy the first `clusters[0, 0]` rows in `points`
* Points for cluster `1` occupy the next `clusters[1, 0]` rows, and so on

This ordering allows you to map cluster-level attributes (`cluster` and `cluster_extra`) back to the underlying points.

### Removing low energy deposits (LED)

By construction, the first cluster in each event (`cluster[0]`) corresponds to amorphous low energy deposits or blips: these are treated as uncountable "stuff" and labeled as LED.

To remove LED points from an event:

```python
EVENT_IDX = 0

with h5py.File("/path/to/dataset/train/generic_v2_196200_v2.h5", "r") as h5f:
    point_flat = h5f["point"][EVENT_IDX]
    cluster_flat = h5f["cluster"][EVENT_IDX]

points = point_flat.reshape(-1, 8)      # (N, 8)
clusters = cluster_flat.reshape(-1, 6)  # (M, 6)

# Number of points belonging to LED (cluster 0)
n_led_points = clusters[0, 0]

# Drop LED points
points_no_led = points[n_led_points:]  # points belonging to non-LED clusters
```

LED clusters also have special values in the ID fields, described in the label schema below.

## Label schema

This section summarizes the label conventions used in the dataset for semantic segmentation, particle identification, and instance or interaction level grouping.

### Semantic segmentation classes

Semantic labels are given by the field in `cluster[:, 4]`.
The mapping is:

| Semantic ID | Class name |
| ----------- | ---------- |
| 0           | Shower     |
| 1           | Track      |
| 2           | Michel     |
| 3           | Delta      |
| 4           | LED        |

Here, LED denotes low energy deposits or amorphous "stuff" that is not counted as a particle instance.

To perform semantic segmentation at the point level, use the cluster ordering:

1. Expand cluster semantic labels to per-point labels according to the point counts per cluster.
2. Optionally remove LED points (Semantic ID 4) as shown above.

### Particle identification (PID) labels

Particle identification uses the Particle ID field in `cluster[:, 5]`.
The mapping is:

| ID | Particle type                       |
| --- | ---------------------------------- |
| 0   | Photon                             |
| 1   | Electron                           |
| 2   | Muon                               |
| 3   | Pion                               |
| 4   | Proton                             |
| 5   | Kaon (not present in this dataset) |
| 6   | None (LED)                         |

LED clusters that correspond to low energy deposits use `PID = 6`.
These clusters are typically also `Semantic ID = 4` and treated as "stuff".

### Instance and interaction IDs

The `cluster` dataset contains several integer IDs to support different grouping granularities:

* **Fragment ID** (`cluster[:, 1]`):
  Identifies contiguous fragments of a particle. Multiple fragments may belong to the same particle.

* **Group ID** (`cluster[:, 2]`):
  Identifies particle-level instances. All clusters with the same group ID correspond to the same physical particle.

  * Use `Group ID` for particle instance segmentation or particle-level identification tasks.

* **Interaction ID** (`cluster[:, 3]`):
  Identifies interaction-level groups. All particles with the same interaction ID belong to the same interaction (for example a neutrino interaction and its secondaries).

  * Use `Interaction ID` for interaction-level segmentation or classification.

For LED clusters, all three IDs

* Fragment ID
* Group ID
* Interaction ID

are set to `-1`. This differentiates LED clusters from genuine particle or interaction instances.

## Reconstruction Tasks

Typical uses of this dataset include:

* **Semantic segmentation**:
  Predict voxelwise semantic labels (shower, track, Michel, delta, LED) using the `Semantic type` field.

* **Particle-level segmentation and PID**:

  * Use `Group ID` to define particle instances.
  * Use `PID` to assign particle type (photon, electron, muon, pion, proton, None).

* **Interaction-level reconstruction**:

  * Use `Interaction ID` to group particles belonging to the same physics interaction.
  * Use `cluster_extra` for per-particle momentum and vertex information.

## Getting started

A [Colab notebook](https://colab.research.google.com/drive/1x8WatdJa5D7Fxd3sLX5XSJiMkT_sG_im) is provided for a hands-on introduction to loading and inspecting the dataset.


## Citation

```bibtex
@misc{young2025particletrajectoryrepresentationlearning,
      title={Particle Trajectory Representation Learning with Masked Point Modeling}, 
      author={Sam Young and Yeon-jae Jwa and Kazuhiro Terao},
      year={2025},
      eprint={2502.02558},
      archivePrefix={arXiv},
      primaryClass={hep-ex},
      doi={10.48550/arXiv.2502.02558},
      url={https://arxiv.org/abs/2502.02558},
}
```