Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
Research-EAI commited on
Commit
8a58fc7
·
verified ·
1 Parent(s): 08d2ca6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -15
README.md CHANGED
@@ -416,7 +416,7 @@ Domain and content type classification probabilities:
416
 
417
  ## How to Load the Dataset
418
 
419
- This section provides examples of how to load the `Research-EAI/eai-taxonomy-math-w-fm` dataset using different Python libraries and frameworks.
420
 
421
  ### Using Hugging Face Datasets (Standard Method)
422
 
@@ -426,7 +426,7 @@ The simplest way to load the dataset is using the Hugging Face `datasets` librar
426
  from datasets import load_dataset
427
 
428
  # Load the entire dataset
429
- dataset = load_dataset("Research-EAI/eai-taxonomy-math-w-fm")
430
 
431
  # View dataset structure
432
  print(dataset)
@@ -439,7 +439,7 @@ You can also load the dataset in streaming mode to avoid downloading the entire
439
  from datasets import load_dataset
440
 
441
  # Load in streaming mode
442
- dataset = load_dataset("Research-EAI/eai-taxonomy-math-w-fm", streaming=True)
443
  data_stream = dataset["train"]
444
 
445
  # Iterate through examples
@@ -462,7 +462,7 @@ from pyspark.sql import SparkSession
462
  spark = SparkSession.builder.appName("EAI-Taxonomy-Math").getOrCreate()
463
 
464
  # Load the dataset using the "huggingface" data source
465
- df = spark.read.format("huggingface").load("Research-EAI/eai-taxonomy-math-w-fm")
466
 
467
  # Basic dataset exploration
468
  print(f"Dataset shape: {df.count()} rows, {len(df.columns)} columns")
@@ -473,7 +473,7 @@ df.printSchema()
473
  df_subset = (
474
  spark.read.format("huggingface")
475
  .option("columns", '["column1", "column2"]') # Replace with actual column names
476
- .load("Research-EAI/eai-taxonomy-math-w-fm")
477
  )
478
 
479
  # Run SQL queries on the dataset
@@ -493,7 +493,7 @@ Daft provides a modern DataFrame library optimized for machine learning workload
493
  import daft
494
 
495
  # Load the entire dataset
496
- df = daft.read_parquet("hf://datasets/Research-EAI/eai-taxonomy-math-w-fm")
497
 
498
  # Basic exploration
499
  print("Dataset schema:")
@@ -507,16 +507,10 @@ If you need to access private datasets or use authentication:
507
 
508
  ```python
509
  import daft
510
- import os
511
 
512
- # Set your Hugging Face token
513
- os.environ["HF_TOKEN"] = "your_huggingface_token_here"
514
-
515
- # Load with authentication
516
- df = daft.read_parquet(
517
- "hf://datasets/Research-EAI/eai-taxonomy-math-w-fm",
518
- hf_token=os.environ["HF_TOKEN"]
519
- )
520
  ```
521
 
522
  ### Installation Requirements
 
416
 
417
  ## How to Load the Dataset
418
 
419
+ This section provides examples of how to load the `EssentialAI/eai-taxonomy-math-w-fm` dataset using different Python libraries and frameworks.
420
 
421
  ### Using Hugging Face Datasets (Standard Method)
422
 
 
426
  from datasets import load_dataset
427
 
428
  # Load the entire dataset
429
+ dataset = load_dataset("EssentialAI/eai-taxonomy-math-w-fm")
430
 
431
  # View dataset structure
432
  print(dataset)
 
439
  from datasets import load_dataset
440
 
441
  # Load in streaming mode
442
+ dataset = load_dataset("EssentialAI/eai-taxonomy-math-w-fm", streaming=True)
443
  data_stream = dataset["train"]
444
 
445
  # Iterate through examples
 
462
  spark = SparkSession.builder.appName("EAI-Taxonomy-Math").getOrCreate()
463
 
464
  # Load the dataset using the "huggingface" data source
465
+ df = spark.read.format("huggingface").load("EssentialAI/eai-taxonomy-math-w-fm")
466
 
467
  # Basic dataset exploration
468
  print(f"Dataset shape: {df.count()} rows, {len(df.columns)} columns")
 
473
  df_subset = (
474
  spark.read.format("huggingface")
475
  .option("columns", '["column1", "column2"]') # Replace with actual column names
476
+ .load("EssentialAI/eai-taxonomy-math-w-fm")
477
  )
478
 
479
  # Run SQL queries on the dataset
 
493
  import daft
494
 
495
  # Load the entire dataset
496
+ df = daft.read_parquet("hf://datasets/EssentialAI/eai-taxonomy-math-w-fm")
497
 
498
  # Basic exploration
499
  print("Dataset schema:")
 
507
 
508
  ```python
509
  import daft
510
+ from daft.io import IOConfig, HTTPConfig
511
 
512
+ io_config = IOConfig(http=HTTPConfig(bearer_token="your_token"))
513
+ df = daft.read_parquet("hf://datasets/EssentialAI/eai-taxonomy-math-w-fm", io_config=io_config)
 
 
 
 
 
 
514
  ```
515
 
516
  ### Installation Requirements