Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
Research-EAI commited on
Commit
927bb96
·
verified ·
1 Parent(s): 87df0bb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +420 -0
README.md CHANGED
@@ -41,6 +41,426 @@ Our approach simplifies math dataset creation:
41
  1. **Traditional Method**: Train high-recall classifiers → Run on billions of documents
42
  2. **Our Method**: Query taxonomy metadata for `51 - Mathematics` → Apply FineMath classifier to all recalled documents → Select top-scoring content
43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  ## 🎓 Citation
45
 
46
  If you use this dataset, please cite our EssentialWeb paper:
 
41
  1. **Traditional Method**: Train high-recall classifiers → Run on billions of documents
42
  2. **Our Method**: Query taxonomy metadata for `51 - Mathematics` → Apply FineMath classifier to all recalled documents → Select top-scoring content
43
 
44
+ # Dataset Schema Documentation
45
+
46
+ ## Overview
47
+
48
+ This dataset contains web-crawled text data with comprehensive metadata, quality signals, and taxonomic classifications. Each record represents a document extracted from web archives with detailed provenance tracking and quality assessment metrics.
49
+
50
+ ## EAI Taxonomy Classification
51
+
52
+ Comprehensive hierarchical classification system with primary and secondary labels - the most important feature of this dataset:
53
+
54
+ ### Free Decimal Correspondence
55
+ Dewey Decimal-inspired classification with 3-level hierarchical labels:
56
+
57
+ | Component | Description | Path |
58
+ |-----------|-------------|------|
59
+ | Primary Code | Main classification code | `eai_taxonomy.free_decimal_correspondence.primary.code` |
60
+ | Primary Level 1 | Top-level category | `eai_taxonomy.free_decimal_correspondence.primary.labels.level_1` |
61
+ | Primary Level 2 | Mid-level category | `eai_taxonomy.free_decimal_correspondence.primary.labels.level_2` |
62
+ | Primary Level 3 | Specific category | `eai_taxonomy.free_decimal_correspondence.primary.labels.level_3` |
63
+ | Secondary Code | Alternative classification code | `eai_taxonomy.free_decimal_correspondence.secondary.code` |
64
+ | Secondary Level 1 | Alternative top-level category | `eai_taxonomy.free_decimal_correspondence.secondary.labels.level_1` |
65
+ | Secondary Level 2 | Alternative mid-level category | `eai_taxonomy.free_decimal_correspondence.secondary.labels.level_2` |
66
+ | Secondary Level 3 | Alternative specific category | `eai_taxonomy.free_decimal_correspondence.secondary.labels.level_3` |
67
+
68
+ ### Bloom's Taxonomy Integration
69
+
70
+ #### Cognitive Process
71
+ Learning and thinking skill levels:
72
+
73
+ | Component | Description | Path |
74
+ |-----------|-------------|------|
75
+ | Primary Code | Main cognitive process code | `eai_taxonomy.bloom_cognitive_process.primary.code` |
76
+ | Primary Label | Main cognitive process label | `eai_taxonomy.bloom_cognitive_process.primary.label` |
77
+ | Secondary Code | Alternative cognitive process code | `eai_taxonomy.bloom_cognitive_process.secondary.code` |
78
+ | Secondary Label | Alternative cognitive process label | `eai_taxonomy.bloom_cognitive_process.secondary.label` |
79
+
80
+ **Possible Values:**
81
+ | Code | Label |
82
+ |------|-------|
83
+ | `-1` | Abstain |
84
+ | `1` | Remember |
85
+ | `2` | Understand |
86
+ | `3` | Apply |
87
+ | `4` | Analyze |
88
+ | `5` | Evaluate |
89
+ | `6` | Create |
90
+
91
+ #### Knowledge Domain
92
+ Subject matter categorization:
93
+
94
+ | Component | Description | Path |
95
+ |-----------|-------------|------|
96
+ | Primary Code | Main knowledge domain code | `eai_taxonomy.bloom_knowledge_domain.primary.code` |
97
+ | Primary Label | Main knowledge domain label | `eai_taxonomy.bloom_knowledge_domain.primary.label` |
98
+ | Secondary Code | Alternative knowledge domain code | `eai_taxonomy.bloom_knowledge_domain.secondary.code` |
99
+ | Secondary Label | Alternative knowledge domain label | `eai_taxonomy.bloom_knowledge_domain.secondary.label` |
100
+
101
+ **Possible Values:**
102
+ | Code | Label |
103
+ |------|-------|
104
+ | `-1` | Abstain |
105
+ | `1` | Factual |
106
+ | `2` | Conceptual |
107
+ | `3` | Procedural |
108
+ | `4` | Metacognitive |
109
+
110
+ ### Document Characteristics
111
+
112
+ #### Document Type v1
113
+ Format and structure classification:
114
+
115
+ | Component | Description | Path |
116
+ |-----------|-------------|------|
117
+ | Primary Code | Main document type code | `eai_taxonomy.document_type_v1.primary.code` |
118
+ | Primary Label | Main document type label | `eai_taxonomy.document_type_v1.primary.label` |
119
+ | Secondary Code | Alternative document type code | `eai_taxonomy.document_type_v1.secondary.code` |
120
+ | Secondary Label | Alternative document type label | `eai_taxonomy.document_type_v1.secondary.label` |
121
+
122
+ **Possible Values:**
123
+ | Code | Label |
124
+ |------|-------|
125
+ | `-1` | Abstain |
126
+ | `1` | News/Editorial |
127
+ | `2` | Academic/Research |
128
+ | `3` | Reference/Encyclopedic/Educational |
129
+ | `4` | Code/Software |
130
+ | `5` | Social/Forum |
131
+ | `6` | Promotional/Advertisement |
132
+ | `7` | Search/Directory/Bibliography |
133
+ | `8` | Adult/Pornographic |
134
+ | `9` | Personal/Misc |
135
+ | `10` | Machine-Generated |
136
+ | `11` | Legal/Regulatory |
137
+ | `12` | Government/Political |
138
+ | `13` | Literary/Creative |
139
+ | `14` | Reviews/Critiques |
140
+ | `15` | E-Commerce/Marketplace |
141
+ | `16` | Images/Videos/Audio |
142
+ | `17` | Other/Unclassified |
143
+
144
+ #### Document Type v2
145
+ Updated format and structure classification:
146
+
147
+ | Component | Description | Path |
148
+ |-----------|-------------|------|
149
+ | Primary Code | Main document type code (v2) | `eai_taxonomy.document_type_v2.primary.code` |
150
+ | Primary Label | Main document type label (v2) | `eai_taxonomy.document_type_v2.primary.label` |
151
+ | Secondary Code | Alternative document type code (v2) | `eai_taxonomy.document_type_v2.secondary.code` |
152
+ | Secondary Label | Alternative document type label (v2) | `eai_taxonomy.document_type_v2.secondary.label` |
153
+
154
+ **Possible Values:**
155
+ | Code | Label |
156
+ |------|-------|
157
+ | `-1` | Abstain |
158
+ | `1` | About (Org.) |
159
+ | `2` | About (Personal) |
160
+ | `3` | Academic Writing |
161
+ | `4` | Audio Transcript |
162
+ | `5` | Comment Section |
163
+ | `6` | Content Listing |
164
+ | `7` | Creative Writing |
165
+ | `8` | Documentation |
166
+ | `9` | FAQ |
167
+ | `10` | Knowledge Article |
168
+ | `11` | Legal Notices |
169
+ | `12` | Listicle |
170
+ | `13` | News (Org.) |
171
+ | `14` | News Article |
172
+ | `15` | Nonfiction Writing |
173
+ | `16` | Personal Blog |
174
+ | `17` | Product Page |
175
+ | `18` | Q&A Forum |
176
+ | `19` | Spam / Ads |
177
+ | `20` | Structured Data |
178
+ | `21` | Customer Support |
179
+ | `22` | Truncated |
180
+ | `23` | Tutorial |
181
+ | `24` | User Review |
182
+ | `25` | Other/Unclassified |
183
+
184
+ #### Extraction Artifacts
185
+ Technical extraction quality indicators:
186
+
187
+ | Component | Description | Path |
188
+ |-----------|-------------|------|
189
+ | Primary Code | Main extraction artifact code | `eai_taxonomy.extraction_artifacts.primary.code` |
190
+ | Primary Label | Main extraction artifact label | `eai_taxonomy.extraction_artifacts.primary.label` |
191
+ | Secondary Code | Alternative extraction artifact code | `eai_taxonomy.extraction_artifacts.secondary.code` |
192
+ | Secondary Label | Alternative extraction artifact label | `eai_taxonomy.extraction_artifacts.secondary.label` |
193
+
194
+ **Possible Values:**
195
+ | Code | Label |
196
+ |------|-------|
197
+ | `-1` | Abstain |
198
+ | `0` | No Artifacts |
199
+ | `1` | Leftover HTML |
200
+ | `2` | Text Extraction Errors |
201
+ | `3` | Irrelevant Content |
202
+ | `4` | Indeterminate |
203
+
204
+ #### Missing Content
205
+ Content completeness assessment:
206
+
207
+ | Component | Description | Path |
208
+ |-----------|-------------|------|
209
+ | Primary Code | Main missing content code | `eai_taxonomy.missing_content.primary.code` |
210
+ | Primary Label | Main missing content label | `eai_taxonomy.missing_content.primary.label` |
211
+ | Secondary Code | Alternative missing content code | `eai_taxonomy.missing_content.secondary.code` |
212
+ | Secondary Label | Alternative missing content label | `eai_taxonomy.missing_content.secondary.label` |
213
+
214
+ **Possible Values:**
215
+ | Code | Label |
216
+ |------|-------|
217
+ | `-1` | Abstain |
218
+ | `0` | No missing content |
219
+ | `1` | Truncated Snippets |
220
+ | `2` | Click Here References |
221
+ | `3` | Incoherent Flow |
222
+ | `4` | Missing Images or Figures |
223
+ | `5` | Missing Referenced Data |
224
+ | `6` | Indeterminate |
225
+
226
+ ### Content Quality Dimensions
227
+
228
+ #### Reasoning Depth
229
+ Complexity of logical reasoning:
230
+
231
+ | Component | Description | Path |
232
+ |-----------|-------------|------|
233
+ | Primary Code | Main reasoning depth code | `eai_taxonomy.reasoning_depth.primary.code` |
234
+ | Primary Label | Main reasoning depth label | `eai_taxonomy.reasoning_depth.primary.label` |
235
+ | Secondary Code | Alternative reasoning depth code | `eai_taxonomy.reasoning_depth.secondary.code` |
236
+ | Secondary Label | Alternative reasoning depth label | `eai_taxonomy.reasoning_depth.secondary.label` |
237
+
238
+ **Possible Values:**
239
+ | Code | Label |
240
+ |------|-------|
241
+ | `-1` | Abstain |
242
+ | `1` | No Reasoning |
243
+ | `2` | Basic Reasoning |
244
+ | `3` | Intermediate Reasoning |
245
+ | `4` | Advanced Reasoning |
246
+ | `5` | Exceptional Reasoning |
247
+ | `6` | Indeterminate |
248
+
249
+ #### Technical Correctness
250
+ Accuracy of technical information:
251
+
252
+ | Component | Description | Path |
253
+ |-----------|-------------|------|
254
+ | Primary Code | Main technical correctness code | `eai_taxonomy.technical_correctness.primary.code` |
255
+ | Primary Label | Main technical correctness label | `eai_taxonomy.technical_correctness.primary.label` |
256
+ | Secondary Code | Alternative technical correctness code | `eai_taxonomy.technical_correctness.secondary.code` |
257
+ | Secondary Label | Alternative technical correctness label | `eai_taxonomy.technical_correctness.secondary.label` |
258
+
259
+ **Possible Values:**
260
+ | Code | Label |
261
+ |------|-------|
262
+ | `-1` | Abstain |
263
+ | `1` | Technically Flawed |
264
+ | `2` | Partially Correct |
265
+ | `3` | Mostly Correct |
266
+ | `4` | Highly Correct |
267
+ | `5` | Exceptionally Correct |
268
+ | `6` | Not Applicable/Indeterminate |
269
+
270
+ #### Education Level
271
+ Appropriate educational grade level:
272
+
273
+ | Component | Description | Path |
274
+ |-----------|-------------|------|
275
+ | Primary Code | Main education level code | `eai_taxonomy.education_level.primary.code` |
276
+ | Primary Label | Main education level label | `eai_taxonomy.education_level.primary.label` |
277
+ | Secondary Code | Alternative education level code | `eai_taxonomy.education_level.secondary.code` |
278
+ | Secondary Label | Alternative education level label | `eai_taxonomy.education_level.secondary.label` |
279
+
280
+ **Possible Values:**
281
+ | Code | Label |
282
+ |------|-------|
283
+ | `-1` | Abstain |
284
+ | `1` | General Audience |
285
+ | `2` | High School Level |
286
+ | `3` | Undergraduate Level |
287
+ | `4` | Graduate/Expert Level |
288
+ | `5` | Indeterminate |
289
+
290
+ ## Schema Structure
291
+
292
+ ### Core Fields
293
+
294
+ | Field | Type | Description | Path |
295
+ |-------|------|-------------|------|
296
+ | `id` | `Int64` | Unique identifier for each document | `id` |
297
+ | `text` | `String` | The main textual content of the document | `text` |
298
+
299
+ ### Metadata Structure
300
+
301
+ The `metadata` field contains a nested structure with web archive information:
302
+
303
+ | Field | Type | Description | Path |
304
+ |-------|------|-------------|------|
305
+ | **URL Information** | | | |
306
+ | URL | `String` | Original URL of the document | `metadata.url` |
307
+ | Source Domain | `String` | Domain name of the source | `metadata.source_domain` |
308
+ | Snapshot ID | `String` | Identifier for the web archive snapshot | `metadata.snapshot_id` |
309
+ | **WARC Metadata** | | WARC (Web ARChive) format metadata | |
310
+ | Content Length | `String` | Size of the content | `metadata.warc_metadata.Content-Length` |
311
+ | Content Type | `String` | MIME type of the content | `metadata.warc_metadata.Content-Type` |
312
+ | Block Digest | `String` | Checksum of the WARC block | `metadata.warc_metadata.WARC-Block-Digest` |
313
+ | Concurrent To | `String` | Related WARC records | `metadata.warc_metadata.WARC-Concurrent-To` |
314
+ | Date | `String` | Timestamp of the crawl | `metadata.warc_metadata.WARC-Date` |
315
+ | IP Address | `String` | Source server IP address | `metadata.warc_metadata.WARC-IP-Address` |
316
+ | Payload Type | `String` | Identified content type | `metadata.warc_metadata.WARC-Identified-Payload-Type` |
317
+ | Payload Digest | `String` | Checksum of the payload | `metadata.warc_metadata.WARC-Payload-Digest` |
318
+ | Record ID | `String` | Unique WARC record identifier | `metadata.warc_metadata.WARC-Record-ID` |
319
+ | Target URI | `String` | Original target URL | `metadata.warc_metadata.WARC-Target-URI` |
320
+ | Truncated | `String` | Truncation status | `metadata.warc_metadata.WARC-Truncated` |
321
+ | Type | `String` | WARC record type | `metadata.warc_metadata.WARC-Type` |
322
+ | Warcinfo ID | `String` | Associated warcinfo record | `metadata.warc_metadata.WARC-Warcinfo-ID` |
323
+ | **Additional Info** | | | |
324
+ | WARC Info | `String` | Additional WARC information | `metadata.warc_info` |
325
+
326
+ ### Text Structure Information
327
+
328
+ | Field | Type | Description | Path |
329
+ |-------|------|-------------|------|
330
+ | Line Start Indices | `List[Int32]` | Starting indices of each line | `line_start_n_end_idx.line_start_idx` |
331
+ | Line End Indices | `List[Int32]` | Ending indices of each line | `line_start_n_end_idx.line_end_idx` |
332
+
333
+ ## Quality Signals
334
+
335
+ The dataset includes two comprehensive quality assessment frameworks:
336
+
337
+ ### Red Pajama v2 Quality Metrics
338
+
339
+ Text quality indicators derived from the Red Pajama v2 filtering pipeline:
340
+
341
+ #### Content Structure Metrics
342
+ | Metric | Description | Path |
343
+ |--------|-------------|------|
344
+ | Original Length | Original document length | `quality_signals.red_pajama_v2.ccnet_original_length` |
345
+ | Original Lines | Number of lines in original document | `quality_signals.red_pajama_v2.ccnet_original_nlines` |
346
+ | Sentence Count | Total sentence count | `quality_signals.red_pajama_v2.rps_doc_num_sentences` |
347
+ | Word Count | Total word count | `quality_signals.red_pajama_v2.rps_doc_word_count` |
348
+ | Mean Word Length | Average word length | `quality_signals.red_pajama_v2.rps_doc_mean_word_length` |
349
+
350
+ #### Language Quality Metrics
351
+ | Metric | Description | Path |
352
+ |--------|-------------|------|
353
+ | Stop Word Fraction | Proportion of stop words | `quality_signals.red_pajama_v2.rps_doc_stop_word_fraction` |
354
+ | Unique Words Fraction | Fraction of unique words | `quality_signals.red_pajama_v2.rps_doc_frac_unique_words` |
355
+ | All Caps Words | Fraction of words in all capitals | `quality_signals.red_pajama_v2.rps_doc_frac_all_caps_words` |
356
+ | Non-Alphabetic Words | Fraction of non-alphabetic words | `quality_signals.red_pajama_v2.rps_doc_frac_no_alph_words` |
357
+ | Unigram Entropy | Entropy measure of word distribution | `quality_signals.red_pajama_v2.rps_doc_unigram_entropy` |
358
+
359
+ #### Content Pattern Analysis
360
+ | Metric | Description | Path |
361
+ |--------|-------------|------|
362
+ | Curly Bracket Density | Curly bracket density (code indicator) | `quality_signals.red_pajama_v2.rps_doc_curly_bracket` |
363
+ | Symbol-to-Word Ratio | Symbol-to-word ratio | `quality_signals.red_pajama_v2.rps_doc_symbol_to_word_ratio` |
364
+ | Ellipsis Line Endings | Lines ending with ellipsis | `quality_signals.red_pajama_v2.rps_doc_frac_lines_end_with_ellipsis` |
365
+ | Lorem Ipsum Detection | Lorem ipsum text detection | `quality_signals.red_pajama_v2.rps_doc_lorem_ipsum` |
366
+ | Offensive Content | Potentially offensive content detection | `quality_signals.red_pajama_v2.rps_doc_ldnoobw_words` |
367
+ | UT1 Blacklist | UT1 blacklist filtering score | `quality_signals.red_pajama_v2.rps_doc_ut1_blacklist` |
368
+
369
+ #### Duplication Detection
370
+ | Metric | Description | Path |
371
+ |--------|-------------|------|
372
+ | 5-gram Duplication | Character-level duplication for 5-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_5grams` |
373
+ | 6-gram Duplication | Character-level duplication for 6-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_6grams` |
374
+ | 7-gram Duplication | Character-level duplication for 7-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_7grams` |
375
+ | 8-gram Duplication | Character-level duplication for 8-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_8grams` |
376
+ | 9-gram Duplication | Character-level duplication for 9-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_9grams` |
377
+ | 10-gram Duplication | Character-level duplication for 10-grams | `quality_signals.red_pajama_v2.rps_doc_frac_chars_dupe_10grams` |
378
+ | Top 2-gram Coverage | Most frequent 2-gram coverage | `quality_signals.red_pajama_v2.rps_doc_frac_chars_top_2gram` |
379
+ | Top 3-gram Coverage | Most frequent 3-gram coverage | `quality_signals.red_pajama_v2.rps_doc_frac_chars_top_3gram` |
380
+ | Top 4-gram Coverage | Most frequent 4-gram coverage | `quality_signals.red_pajama_v2.rps_doc_frac_chars_top_4gram` |
381
+
382
+ #### Domain Importance Scores
383
+ | Metric | Description | Path |
384
+ |--------|-------------|------|
385
+ | Books Importance | Similarity to book content | `quality_signals.red_pajama_v2.rps_doc_books_importance` |
386
+ | Books Importance (Length Corrected) | Length-corrected books similarity | `quality_signals.red_pajama_v2.rps_doc_books_importance_length_correction` |
387
+ | OpenWebText Importance | Similarity to OpenWebText | `quality_signals.red_pajama_v2.rps_doc_openwebtext_importance` |
388
+ | OpenWebText Importance (Length Corrected) | Length-corrected OpenWebText similarity | `quality_signals.red_pajama_v2.rps_doc_openwebtext_importance_length_correction` |
389
+ | Wikipedia Importance | Similarity to Wikipedia | `quality_signals.red_pajama_v2.rps_doc_wikipedia_importance` |
390
+ | Wikipedia Importance (Length Corrected) | Length-corrected Wikipedia similarity | `quality_signals.red_pajama_v2.rps_doc_wikipedia_importance_length_correction` |
391
+
392
+ ### FastText Classification Scores
393
+
394
+ Domain and content type classification probabilities:
395
+
396
+ | Metric | Description | Path |
397
+ |--------|-------------|------|
398
+ | DCLM Score | DataComp-LM classifier score | `quality_signals.fasttext.dclm` |
399
+ | English Confidence | English language confidence | `quality_signals.fasttext.english` |
400
+ | Educational Content | Educational content approximation | `quality_signals.fasttext.fineweb_edu_approx` |
401
+ | General Math | General mathematics content | `quality_signals.fasttext.eai_general_math` |
402
+ | Web Math | Web-based mathematics content | `quality_signals.fasttext.eai_open_web_math` |
403
+ | Code Content | Code content detection | `quality_signals.fasttext.eai_web_code` |
404
+
405
+ ## Data Provenance
406
+
407
+ All documents originate from web crawls with full WARC metadata preservation, enabling:
408
+ - Source verification and attribution
409
+ - Temporal analysis of web content
410
+ - Content deduplication across crawls
411
+ - Quality assessment pipeline reconstruction
412
+
413
+ ## Usage Examples
414
+
415
+ **Filter by quality score:**
416
+ ```python
417
+ df.filter(df["quality_signals.red_pajama_v2.rps_doc_stop_word_fraction"] > 0.3)
418
+ ```
419
+
420
+ **Filter by domain:**
421
+ ```python
422
+ df.filter(df["metadata.source_domain"].contains("wikipedia"))
423
+ ```
424
+
425
+ **Filter by education level:**
426
+ ```python
427
+ df.filter(df["eai_taxonomy.education_level.primary.code"] == "2") # High School Level
428
+ ```
429
+
430
+ **Filter by content type:**
431
+ ```python
432
+ df.filter(df["quality_signals.fasttext.eai_web_code"] > 0.8)
433
+ ```
434
+
435
+ **Filter by document quality:**
436
+ ```python
437
+ df.filter(
438
+ (df["quality_signals.red_pajama_v2.rps_doc_word_count"] > 100) &
439
+ (df["quality_signals.red_pajama_v2.rps_doc_stop_word_fraction"] > 0.2) &
440
+ (df["quality_signals.red_pajama_v2.rps_doc_frac_unique_words"] > 0.3)
441
+ )
442
+ ```
443
+
444
+ **Filter by reasoning depth:**
445
+ ```python
446
+ df.filter(df["eai_taxonomy.reasoning_depth.primary.code"].isin(["4", "5"])) # Advanced or Exceptional
447
+ ```
448
+
449
+ **Filter by document type:**
450
+ ```python
451
+ df.filter(df["eai_taxonomy.document_type_v2.primary.code"] == "3") # Academic Writing
452
+ ```
453
+
454
+ **Filter high-quality educational content:**
455
+ ```python
456
+ df.filter(
457
+ (df["eai_taxonomy.education_level.primary.code"].isin(["2", "3"])) & # High School or Undergraduate
458
+ (df["eai_taxonomy.technical_correctness.primary.code"].isin(["4", "5"])) & # Highly or Exceptionally Correct
459
+ (df["eai_taxonomy.extraction_artifacts.primary.code"] == "0") & # No Artifacts
460
+ (df["quality_signals.fasttext.fineweb_edu_approx"] > 0.7)
461
+ )
462
+ ```
463
+
464
  ## 🎓 Citation
465
 
466
  If you use this dataset, please cite our EssentialWeb paper: