Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
Research-EAI commited on
Commit
a03fcdd
·
verified ·
1 Parent(s): c06328d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -10
README.md CHANGED
@@ -422,7 +422,7 @@ Domain and content type classification probabilities:
422
 
423
  ## How to Load the Dataset
424
 
425
- This section provides examples of how to load the `EssentialAI/eai-taxonomy-medical-w-dclm` dataset using different Python libraries and frameworks.
426
 
427
  ### Using Hugging Face Datasets (Standard Method)
428
 
@@ -432,7 +432,7 @@ The simplest way to load the dataset is using the Hugging Face `datasets` librar
432
  from datasets import load_dataset
433
 
434
  # Load the entire dataset
435
- dataset = load_dataset("EssentialAI/eai-taxonomy-medical-w-dclm")
436
 
437
  # View dataset structure
438
  print(dataset)
@@ -445,7 +445,7 @@ You can also load the dataset in streaming mode to avoid downloading the entire
445
  from datasets import load_dataset
446
 
447
  # Load in streaming mode
448
- dataset = load_dataset("EssentialAI/eai-taxonomy-medical-w-dclm", streaming=True)
449
  data_stream = dataset["train"]
450
 
451
  # Iterate through examples
@@ -465,10 +465,10 @@ import pyspark_huggingface
465
  from pyspark.sql import SparkSession
466
 
467
  # Initialize Spark session
468
- spark = SparkSession.builder.appName("EAI-Taxonomy-Medical-w-DCLM").getOrCreate()
469
 
470
  # Load the dataset using the "huggingface" data source
471
- df = spark.read.format("huggingface").load("EssentialAI/eai-taxonomy-medical-w-dclm")
472
 
473
  # Basic dataset exploration
474
  print(f"Dataset shape: {df.count()} rows, {len(df.columns)} columns")
@@ -479,14 +479,14 @@ df.printSchema()
479
  df_subset = (
480
  spark.read.format("huggingface")
481
  .option("columns", '["column1", "column2"]') # Replace with actual column names
482
- .load("EssentialAI/eai-taxonomy-medical-w-dclm")
483
  )
484
 
485
  # Run SQL queries on the dataset
486
- df.createOrReplaceTempView("eai_taxonomy_medical_w_dclm_dataset")
487
  result = spark.sql("""
488
  SELECT COUNT(*) as total_examples
489
- FROM eai_taxonomy_medical_w_dclm_dataset
490
  """)
491
  result.show()
492
  ```
@@ -499,7 +499,7 @@ Daft provides a modern DataFrame library optimized for machine learning workload
499
  import daft
500
 
501
  # Load the entire dataset
502
- df = daft.read_parquet("hf://datasets/EssentialAI/eai-taxonomy-medical-w-dclm")
503
 
504
  # Basic exploration
505
  print("Dataset schema:")
@@ -516,7 +516,7 @@ import daft
516
  from daft.io import IOConfig, HTTPConfig
517
 
518
  io_config = IOConfig(http=HTTPConfig(bearer_token="your_token"))
519
- df = daft.read_parquet("hf://datasets/EssentialAI/eai-taxonomy-medical-w-dclm", io_config=io_config)
520
  ```
521
 
522
  ### Installation Requirements
 
422
 
423
  ## How to Load the Dataset
424
 
425
+ This section provides examples of how to load the `EssentialAI/eai-taxonomy-med-w-dclm-100b-sample` dataset using different Python libraries and frameworks.
426
 
427
  ### Using Hugging Face Datasets (Standard Method)
428
 
 
432
  from datasets import load_dataset
433
 
434
  # Load the entire dataset
435
+ dataset = load_dataset("EssentialAI/eai-taxonomy-med-w-dclm-100b-sample")
436
 
437
  # View dataset structure
438
  print(dataset)
 
445
  from datasets import load_dataset
446
 
447
  # Load in streaming mode
448
+ dataset = load_dataset("EssentialAI/eai-taxonomy-med-w-dclm-100b-sample", streaming=True)
449
  data_stream = dataset["train"]
450
 
451
  # Iterate through examples
 
465
  from pyspark.sql import SparkSession
466
 
467
  # Initialize Spark session
468
+ spark = SparkSession.builder.appName("EAI-Taxonomy-Med-w-DCLM").getOrCreate()
469
 
470
  # Load the dataset using the "huggingface" data source
471
+ df = spark.read.format("huggingface").load("EssentialAI/eai-taxonomy-med-w-dclm-100b-sample")
472
 
473
  # Basic dataset exploration
474
  print(f"Dataset shape: {df.count()} rows, {len(df.columns)} columns")
 
479
  df_subset = (
480
  spark.read.format("huggingface")
481
  .option("columns", '["column1", "column2"]') # Replace with actual column names
482
+ .load("EssentialAI/eai-taxonomy-med-w-dclm-100b-sample")
483
  )
484
 
485
  # Run SQL queries on the dataset
486
+ df.createOrReplaceTempView("eai_taxonomy_med_w_dclm_dataset")
487
  result = spark.sql("""
488
  SELECT COUNT(*) as total_examples
489
+ FROM eai_taxonomy_med_w_dclm_dataset
490
  """)
491
  result.show()
492
  ```
 
499
  import daft
500
 
501
  # Load the entire dataset
502
+ df = daft.read_parquet("hf://datasets/EssentialAI/eai-taxonomy-med-w-dclm-100b-sample")
503
 
504
  # Basic exploration
505
  print("Dataset schema:")
 
516
  from daft.io import IOConfig, HTTPConfig
517
 
518
  io_config = IOConfig(http=HTTPConfig(bearer_token="your_token"))
519
+ df = daft.read_parquet("hf://datasets/EssentialAI/eai-taxonomy-med-w-dclm-100b-sample", io_config=io_config)
520
  ```
521
 
522
  ### Installation Requirements