Add SMOLTRACE dataset card
Browse files
README.md
CHANGED
|
@@ -1,41 +1,142 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
-
|
| 5 |
-
|
| 6 |
-
-
|
| 7 |
-
|
| 8 |
-
-
|
| 9 |
-
|
| 10 |
-
- name: power_cost_usd
|
| 11 |
-
dtype: float64
|
| 12 |
-
- name: gpu_utilization_percent
|
| 13 |
-
dtype: float64
|
| 14 |
-
- name: gpu_memory_used_mib
|
| 15 |
-
dtype: float64
|
| 16 |
-
- name: gpu_memory_total_mib
|
| 17 |
-
dtype: float64
|
| 18 |
-
- name: gpu_temperature_celsius
|
| 19 |
-
dtype: float64
|
| 20 |
-
- name: gpu_power_watts
|
| 21 |
-
dtype: float64
|
| 22 |
-
- name: timestamp
|
| 23 |
-
dtype: string
|
| 24 |
-
- name: timestamp_unix_nano
|
| 25 |
-
dtype: string
|
| 26 |
-
- name: gpu_id
|
| 27 |
-
dtype: string
|
| 28 |
-
- name: gpu_name
|
| 29 |
-
dtype: string
|
| 30 |
-
splits:
|
| 31 |
-
- name: train
|
| 32 |
-
num_bytes: 6290
|
| 33 |
-
num_examples: 40
|
| 34 |
-
download_size: 7688
|
| 35 |
-
dataset_size: 6290
|
| 36 |
-
configs:
|
| 37 |
-
- config_name: default
|
| 38 |
-
data_files:
|
| 39 |
-
- split: train
|
| 40 |
-
path: data/train-*
|
| 41 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: agpl-3.0
|
| 3 |
+
tags:
|
| 4 |
+
- smoltrace
|
| 5 |
+
- smolagents
|
| 6 |
+
- evaluation
|
| 7 |
+
- benchmark
|
| 8 |
+
- llm
|
| 9 |
+
- agents
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
+
|
| 12 |
+
<div align="center">
|
| 13 |
+
<img src="https://raw.githubusercontent.com/Mandark-droid/SMOLTRACE/main/.github/images/Logo.png" alt="SMOLTRACE Logo" width="400"/>
|
| 14 |
+
|
| 15 |
+
<h3>Tiny Agents. Total Visibility.</h3>
|
| 16 |
+
|
| 17 |
+
<p>
|
| 18 |
+
<a href="https://github.com/Mandark-droid/SMOLTRACE"><img src="https://img.shields.io/badge/GitHub-SMOLTRACE-blue?logo=github" alt="GitHub"></a>
|
| 19 |
+
<a href="https://pypi.org/project/smoltrace/"><img src="https://img.shields.io/pypi/v/smoltrace?color=green" alt="PyPI"></a>
|
| 20 |
+
<a href="https://github.com/Mandark-droid/SMOLTRACE#readme"><img src="https://img.shields.io/badge/docs-readme-orange" alt="Documentation"></a>
|
| 21 |
+
</p>
|
| 22 |
+
</div>
|
| 23 |
+
|
| 24 |
+
---
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# SMOLTRACE GPU & Environmental Metrics
|
| 28 |
+
|
| 29 |
+
This dataset contains time-series GPU metrics and environmental impact data from a SMOLTRACE benchmark run.
|
| 30 |
+
|
| 31 |
+
## Dataset Information
|
| 32 |
+
|
| 33 |
+
| Field | Value |
|
| 34 |
+
|-------|-------|
|
| 35 |
+
| **Model** | `Kiy-K/Fyodor-Q3-8B-Instruct` |
|
| 36 |
+
| **Run ID** | `job_6f7ee8e4` |
|
| 37 |
+
| **Total Samples** | 40 |
|
| 38 |
+
| **Generated** | 2025-11-25 13:19:56 UTC |
|
| 39 |
+
| **GPU Metrics** | Available |
|
| 40 |
+
|
| 41 |
+
## Schema
|
| 42 |
+
|
| 43 |
+
| Column | Type | Description |
|
| 44 |
+
|--------|------|-------------|
|
| 45 |
+
| `run_id` | string | Unique run identifier |
|
| 46 |
+
| `timestamp` | string | ISO timestamp of measurement |
|
| 47 |
+
| `timestamp_unix_nano` | string | Unix nanosecond timestamp |
|
| 48 |
+
| `service_name` | string | Service identifier |
|
| 49 |
+
| `gpu_id` | string | GPU device ID |
|
| 50 |
+
| `gpu_name` | string | GPU model name |
|
| 51 |
+
| `gpu_utilization_percent` | float | GPU compute utilization (0-100%) |
|
| 52 |
+
| `gpu_memory_used_mib` | float | GPU memory used (MiB) |
|
| 53 |
+
| `gpu_memory_total_mib` | float | Total GPU memory (MiB) |
|
| 54 |
+
| `gpu_temperature_celsius` | float | GPU temperature (°C) |
|
| 55 |
+
| `gpu_power_watts` | float | GPU power consumption (W) |
|
| 56 |
+
| `co2_emissions_gco2e` | float | Cumulative CO2 emissions (gCO2e) |
|
| 57 |
+
| `power_cost_usd` | float | Cumulative power cost (USD) |
|
| 58 |
+
|
| 59 |
+
## Environmental Impact
|
| 60 |
+
|
| 61 |
+
SMOLTRACE tracks environmental metrics to help you understand the carbon footprint of your AI workloads:
|
| 62 |
+
|
| 63 |
+
- **CO2 Emissions**: Calculated based on GPU power consumption and regional carbon intensity
|
| 64 |
+
- **Power Cost**: Estimated electricity cost based on configurable rates
|
| 65 |
+
|
| 66 |
+
## Usage
|
| 67 |
+
|
| 68 |
+
```python
|
| 69 |
+
from datasets import load_dataset
|
| 70 |
+
import pandas as pd
|
| 71 |
+
|
| 72 |
+
# Load metrics
|
| 73 |
+
ds = load_dataset("YOUR_USERNAME/smoltrace-metrics-TIMESTAMP")
|
| 74 |
+
|
| 75 |
+
# Convert to DataFrame for analysis
|
| 76 |
+
df = pd.DataFrame(ds['train'])
|
| 77 |
+
|
| 78 |
+
# Plot GPU utilization over time
|
| 79 |
+
import matplotlib.pyplot as plt
|
| 80 |
+
plt.plot(df['timestamp'], df['gpu_utilization_percent'])
|
| 81 |
+
plt.xlabel('Time')
|
| 82 |
+
plt.ylabel('GPU Utilization (%)')
|
| 83 |
+
plt.title('GPU Utilization During Evaluation')
|
| 84 |
+
plt.show()
|
| 85 |
+
|
| 86 |
+
# Get total environmental impact
|
| 87 |
+
total_co2 = df['co2_emissions_gco2e'].max()
|
| 88 |
+
total_cost = df['power_cost_usd'].max()
|
| 89 |
+
print(f"Total CO2: {total_co2:.4f} gCO2e")
|
| 90 |
+
print(f"Total Cost: ${total_cost:.6f}")
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
## Related Datasets
|
| 94 |
+
|
| 95 |
+
This evaluation run also generated:
|
| 96 |
+
- **Results Dataset**: Pass/fail outcomes for each test case
|
| 97 |
+
- **Traces Dataset**: Detailed OpenTelemetry execution traces
|
| 98 |
+
- **Leaderboard**: Aggregated metrics for model comparison
|
| 99 |
+
|
| 100 |
+
---
|
| 101 |
+
|
| 102 |
+
## About SMOLTRACE
|
| 103 |
+
|
| 104 |
+
**SMOLTRACE** is a comprehensive benchmarking and evaluation framework for [Smolagents](https://huggingface.co/docs/smolagents) - HuggingFace's lightweight agent library.
|
| 105 |
+
|
| 106 |
+
### Key Features
|
| 107 |
+
- Automated agent evaluation with customizable test cases
|
| 108 |
+
- OpenTelemetry-based tracing for detailed execution insights
|
| 109 |
+
- GPU metrics collection (utilization, memory, temperature, power)
|
| 110 |
+
- CO2 emissions and power cost tracking
|
| 111 |
+
- Leaderboard aggregation and comparison
|
| 112 |
+
|
| 113 |
+
### Quick Links
|
| 114 |
+
- [GitHub Repository](https://github.com/Mandark-droid/SMOLTRACE)
|
| 115 |
+
- [PyPI Package](https://pypi.org/project/smoltrace/)
|
| 116 |
+
- [Documentation](https://github.com/Mandark-droid/SMOLTRACE#readme)
|
| 117 |
+
- [Report Issues](https://github.com/Mandark-droid/SMOLTRACE/issues)
|
| 118 |
+
|
| 119 |
+
### Installation
|
| 120 |
+
|
| 121 |
+
```bash
|
| 122 |
+
pip install smoltrace
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
### Citation
|
| 126 |
+
|
| 127 |
+
If you use SMOLTRACE in your research, please cite:
|
| 128 |
+
|
| 129 |
+
```bibtex
|
| 130 |
+
@software{smoltrace,
|
| 131 |
+
title = {SMOLTRACE: Benchmarking Framework for Smolagents},
|
| 132 |
+
author = {Thakkar, Kshitij},
|
| 133 |
+
url = {https://github.com/Mandark-droid/SMOLTRACE},
|
| 134 |
+
year = {2025}
|
| 135 |
+
}
|
| 136 |
+
```
|
| 137 |
+
|
| 138 |
+
---
|
| 139 |
+
|
| 140 |
+
<div align="center">
|
| 141 |
+
<sub>Generated by <a href="https://github.com/Mandark-droid/SMOLTRACE">SMOLTRACE</a></sub>
|
| 142 |
+
</div>
|