Datasets:
File size: 1,408 Bytes
83b280c e62795a 464e93b e62795a 83b280c e62795a 464e93b e62795a 464e93b e62795a 464e93b e62795a 464e93b e62795a 464e93b e62795a 464e93b e62795a 464e93b e62795a 464e93b e62795a 464e93b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
license: mit
task_categories:
- visual-question-answering
language:
- zh
- en
tags:
- spatial-reasoning
- blender
- synthetic
- vision-language
pretty_name: Synthetic Spatial Visual Language Question Answering Dataset
size_categories:
- 1K<n<100K
---
# Synthetic Spatial Visual Language Question Answering Dataset
Automatically generated from the Blender Scene Dataset. Each example contains an image and a question-answer pair to probe **metric** (numeric) and **relation** (true/false) spatial reasoning skills.
* **Images**: Rendered using Blender (1000 scenes, 5 random primitives each, random cameras and lighting).
* **Metadata**: Object name, position, scale, color, material flags.
* **Questions**: 10 per image, drawn from handcrafted templates, covering:
* Euclidean/horizontal/vertical distance queries
* Object width queries
* Front/back predicates relative to the camera
Distances are in Blender scene units, rounded to 1 cm precision.
## Fields
| Field | Type | Description |
|---------|---------|-------------------------------------|
| image | image | rendered scene |
| question| string | natural language query |
| answer | string | ground truth answer |
## Quotes
```
@misc{synthetic_spatialvlm_qa,
title = {Synthetic Spatial Vision-Language Question Answering Dataset},
author = {<your name>},
year = 2025,
url = {https://huggingface.co/datasets/Litian2002/spatialvlm_qa}
}
``` |