Datasets:

Modalities:
Video
ArXiv:
License:
File size: 3,933 Bytes
7d57308
 
 
 
 
 
 
3d53cb4
bf62400
62e0e79
bf62400
 
 
 
62e0e79
 
 
 
bf62400
2b6c7d9
bf62400
f99ab3e
 
 
3fcee7e
f99ab3e
3fcee7e
f99ab3e
3fcee7e
f99ab3e
3fcee7e
f99ab3e
bf62400
 
 
fd20759
1e471f3
bf62400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e471f3
 
7d57308
 
 
1e471f3
bf62400
 
 
 
 
 
 
 
030316f
bf62400
1be9d0d
 
bf62400
 
 
 
 
69410e4
7d57308
 
 
3d53cb4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: mit
task_categories:
- robotics
tags:
- tactile
---

# πŸ“¦ FreeTacman
## Robot-free Visuo-Tactile Data Collection System for Contact-rich Manipulation [ICRA 2026]


## 🎯 Overview

This dataset supports the paper **[FreeTacman: Robot-free Visuo-Tactile Data Collection System for Contact-rich Manipulation](http://arxiv.org/abs/2506.01941)**. 
It contains a large-scale, high-precision visuo-tactile manipulation dataset with over 3000k visuo-tactile image pairs, more than 10k trajectories across 50 tasks.
We provide πŸ€— Script ([Hugging Face](https://huggingface.co/datasets/OpenDriveLab/FreeTacMan)) and πŸ‘Ύ Script ([ModelScope](https://www.modelscope.cn/datasets/OpenDriveLab/FreeTacMan)) (users in China) for downloading the dataset.

![FreeTacMan System Overview](https://raw.githubusercontent.com/OpenDriveLab/opendrivelab.github.io/master/FreeTacMan/task/datasetweb.png)
Please refer to our πŸš€ [Website](http://opendrivelab.com/freetacman) | πŸ“„ [Paper](http://arxiv.org/abs/2506.01941) | πŸ’» [Code](https://github.com/OpenDriveLab/FreeTacMan) | πŸ› οΈ [Hardware Guide](https://docs.google.com/document/d/1Hhi2stn_goXUHdYi7461w10AJbzQDC0fdYaSxMdMVXM/edit?addon_store&tab=t.0#heading=h.rl14j3i7oz0t) | πŸ“Ί [Video](https://opendrivelab.github.io/FreeTacMan/landing/FreeTacMan_demo_video.mp4) | 🌐 [X](https://x.com/OpenDriveLab/status/1930234855729836112) for more details.

## πŸ”¬ Potential Applications
The FreeTacman dataset enables diverse research directions in visuo-tactile learning and manipulation:

- **System Reproduction**: For researchers interested in hardware implementation, you can reproduce FreeTacMan from scratch using our πŸ› οΈ [Hardware Guide](https://docs.google.com/document/d/1Hhi2stn_goXUHdYi7461w10AJbzQDC0fdYaSxMdMVXM/edit?addon_store&tab=t.0#heading=h.rl14j3i7oz0t) and πŸ’» [Code](https://github.com/OpenDriveLab/FreeTacMan).

- **Multimodal Imitation Learning**: Transfer to other LED-based tactile sensors (such as GelSight) for developing robust multimodal imitation learning frameworks.

- **Tactile-aware Grasping**: Utilize the dataset for pre-training tactile representation models and developing tactile-aware reasoning systems.

- **Simulation-to-Real Transfer**: Leverage the dynamic tactile interaction sequences to enhance tactile simulation fidelity, significantly reducing the sim2real gap.

## πŸ“‚ Dataset Structure

The dataset is organized into 50 task categories, each containing:
- **Video files**: Synchronized video recordings from the wrist-mounted and visuo-tactile cameras for each demonstration
- **Trajectory files**: Detailed tracking data for tool center point pose and gripper distance


## 🧾 Data Format

### Video Files

- **Format**: MP4
- **Views**: Wrist-mounted camera and visuo-tactile camera perspectives per demonstration

### Trajectory Files

Each trajectory file contains the following data columns:

#### Timestamp
- `timestamp` - Unix Timestamp

#### Tool Center Point (TCP) Data

- `TCP_pos_x`, `TCP_pos_y`, `TCP_pos_z` - TCP position
- `TCP_euler_x`, `TCP_euler_y`, `TCP_euler_z` - TCP orientation (euler angles)
- `quat_w`, `quat_x`, `quat_y`, `quat_z` - TCP orientation (quaternion representation)

#### Gripper Data
- `gripper_distance` - Gripper opening distance


## πŸ“ Citation

If you use this dataset in your research, please cite:

```bibtex
@article{wu2025freetacman,
  title={FreeTacMan: Robot-free visuo-tactile data collection system for contact-rich manipulation},
  author={Wu, Longyan and Yu, Checheng and Ren, Jieji and Chen, Li and Jiang, Yufei and Huang, Ran and Gu, Guoying and Li, Hongyang},
  journal={IEEE International Conference on Robotics and Automation},
  year={2026}
}
```

## πŸ’Ό License

This dataset is released under the MIT License. See LICENSE file for details.

## πŸ“§ Contact

For questions or issues regarding the dataset, please contact: Longyan Wu (im.longyanwu@gmail.com).