Datasets:
Add dataset card
Browse files
README.md
CHANGED
|
@@ -1,54 +1,337 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
-
|
| 5 |
-
|
| 6 |
-
-
|
| 7 |
-
|
| 8 |
-
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
-
|
| 15 |
-
|
| 16 |
-
-
|
| 17 |
-
|
| 18 |
-
-
|
| 19 |
-
|
| 20 |
-
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
- name: resolvability
|
| 25 |
-
dtype: string
|
| 26 |
-
- name: source
|
| 27 |
-
dtype: string
|
| 28 |
-
- name: id
|
| 29 |
-
dtype: string
|
| 30 |
-
- name: notes
|
| 31 |
-
dtype: string
|
| 32 |
-
- name: components
|
| 33 |
-
dtype: string
|
| 34 |
-
- name: full_json
|
| 35 |
-
dtype: string
|
| 36 |
-
- name: filters_json
|
| 37 |
-
dtype: string
|
| 38 |
-
splits:
|
| 39 |
-
- name: train
|
| 40 |
-
num_bytes: 809494
|
| 41 |
-
num_examples: 682
|
| 42 |
-
- name: test
|
| 43 |
-
num_bytes: 116285
|
| 44 |
-
num_examples: 100
|
| 45 |
-
download_size: 183002
|
| 46 |
-
dataset_size: 925779
|
| 47 |
-
configs:
|
| 48 |
-
- config_name: default
|
| 49 |
-
data_files:
|
| 50 |
-
- split: train
|
| 51 |
-
path: data/train-*
|
| 52 |
-
- split: test
|
| 53 |
-
path: data/test-*
|
| 54 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- ca
|
| 5 |
+
- es
|
| 6 |
+
- en
|
| 7 |
+
task_categories:
|
| 8 |
+
- text-generation
|
| 9 |
+
- text2text-generation
|
| 10 |
+
task_ids:
|
| 11 |
+
- semantic-parsing
|
| 12 |
+
tags:
|
| 13 |
+
- query-parsing
|
| 14 |
+
- structured-output
|
| 15 |
+
- json-generation
|
| 16 |
+
- multilingual
|
| 17 |
+
- catalan
|
| 18 |
+
- spanish
|
| 19 |
+
- R&D
|
| 20 |
+
- semantic-search
|
| 21 |
+
- AINA
|
| 22 |
+
size_categories:
|
| 23 |
+
- n<1K
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
---
|
| 25 |
+
|
| 26 |
+
# IMPULS Query Parsing Dataset
|
| 27 |
+
|
| 28 |
+
A multilingual dataset for training and evaluating query parsing models that convert natural language queries into structured JSON for R&D project semantic search.
|
| 29 |
+
|
| 30 |
+
## Dataset Description
|
| 31 |
+
|
| 32 |
+
This dataset was created as part of the **IMPULS project** (AINA Challenge 2024), a collaboration between [SIRIS Academic](https://sirisacademic.com/) and [Generalitat de Catalunya](https://web.gencat.cat/) to build a multilingual semantic search system for R&D ecosystems.
|
| 33 |
+
|
| 34 |
+
The dataset contains natural language queries in **Catalan, Spanish, and English** paired with their structured JSON representations, designed for training models to:
|
| 35 |
+
- Extract semantic search terms from natural language
|
| 36 |
+
- Identify structured filters (funding programme, year, location, organization type)
|
| 37 |
+
- Detect query language and intent
|
| 38 |
+
|
| 39 |
+
### Supported Tasks
|
| 40 |
+
|
| 41 |
+
- **Query Parsing / Semantic Parsing**: Convert natural language to structured JSON
|
| 42 |
+
- **Information Extraction**: Extract entities and filters from queries
|
| 43 |
+
- **Multilingual NLU**: Understanding queries across CA/ES/EN
|
| 44 |
+
|
| 45 |
+
## Dataset Structure
|
| 46 |
+
|
| 47 |
+
### Data Splits
|
| 48 |
+
|
| 49 |
+
| Split | Examples | Description |
|
| 50 |
+
|-------|----------|-------------|
|
| 51 |
+
| `train` | 682 | Synthetic, template-generated queries |
|
| 52 |
+
| `test` | 100 | Real queries from domain experts |
|
| 53 |
+
|
| 54 |
+
### Schema
|
| 55 |
+
|
| 56 |
+
Each example contains a structured JSON with the following fields:
|
| 57 |
+
|
| 58 |
+
```json
|
| 59 |
+
{
|
| 60 |
+
"doc_type": "projects",
|
| 61 |
+
"filters": {
|
| 62 |
+
"programme": "Horizon 2020 | FEDER | SIFECAT | null",
|
| 63 |
+
"funding_level": "string | null",
|
| 64 |
+
"year": ">=2020 | 2015-2020 | null",
|
| 65 |
+
"location": "Catalunya | Spain | null",
|
| 66 |
+
"location_level": "region | province | country | null"
|
| 67 |
+
},
|
| 68 |
+
"organisations": [
|
| 69 |
+
{
|
| 70 |
+
"type": "university | research_center | hospital | company | null",
|
| 71 |
+
"name": "UPC | CSIC | null",
|
| 72 |
+
"location": "Barcelona | null",
|
| 73 |
+
"location_level": "province | region | null"
|
| 74 |
+
}
|
| 75 |
+
],
|
| 76 |
+
"semantic_query": "intel·ligència artificial salut",
|
| 77 |
+
"query_rewrite": "Human-readable interpretation of the query",
|
| 78 |
+
"meta": {
|
| 79 |
+
"id": "TRAIN_001",
|
| 80 |
+
"source": "synthetic | expert",
|
| 81 |
+
"lang": "CA | ES | EN",
|
| 82 |
+
"original_query": "The original natural language query",
|
| 83 |
+
"intent": "Discover | Quantify",
|
| 84 |
+
"style": "Concise | Verbose | Technical",
|
| 85 |
+
"components": ["Content", "Programme", "Year", "Location"],
|
| 86 |
+
"resolvability": "Direct | Adapted | Partial",
|
| 87 |
+
"notes": "Optional notes about interpretation"
|
| 88 |
+
}
|
| 89 |
+
}
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
### Field Descriptions
|
| 93 |
+
|
| 94 |
+
| Field | Description |
|
| 95 |
+
|-------|-------------|
|
| 96 |
+
| `doc_type` | Document type to search (always "projects") |
|
| 97 |
+
| `filters.programme` | Funding programme (H2020, Horizon Europe, FEDER, SIFECAT, etc.) |
|
| 98 |
+
| `filters.year` | Year filter (single year, range, or comparison like ">=2020") |
|
| 99 |
+
| `filters.location` | Geographic filter |
|
| 100 |
+
| `filters.location_level` | Geographic granularity (country, region, province) |
|
| 101 |
+
| `organisations` | List of organization filters with type, name, and location |
|
| 102 |
+
| `semantic_query` | Core thematic content for vector search |
|
| 103 |
+
| `query_rewrite` | Human-readable interpretation |
|
| 104 |
+
| `meta.original_query` | The original natural language query |
|
| 105 |
+
| `meta.lang` | Query language (CA/ES/EN) |
|
| 106 |
+
| `meta.intent` | Query intent (Discover/Quantify) |
|
| 107 |
+
| `meta.resolvability` | How well the query maps to the schema |
|
| 108 |
+
|
| 109 |
+
## Dataset Statistics
|
| 110 |
+
|
| 111 |
+
### Language Distribution
|
| 112 |
+
|
| 113 |
+
| Language | Training | Test |
|
| 114 |
+
|----------|----------|------|
|
| 115 |
+
| Catalan (CA) | ~33% | ~33% |
|
| 116 |
+
| Spanish (ES) | ~33% | ~21% |
|
| 117 |
+
| English (EN) | ~33% | ~46% |
|
| 118 |
+
|
| 119 |
+
### Intent Distribution
|
| 120 |
+
|
| 121 |
+
| Intent | Count | Percentage |
|
| 122 |
+
|--------|-------|------------|
|
| 123 |
+
| Discover | 600 | 88.0% |
|
| 124 |
+
| Quantify | 82 | 12.0% |
|
| 125 |
+
|
| 126 |
+
### Resolvability Distribution
|
| 127 |
+
|
| 128 |
+
| Type | Count | Percentage | Description |
|
| 129 |
+
|------|-------|------------|-------------|
|
| 130 |
+
| Direct | 529 | 77.6% | Fully mappable to schema |
|
| 131 |
+
| Adapted | 15 | 2.2% | Requires interpretation |
|
| 132 |
+
| Partial | 138 | 20.2% | Cannot fully express (ranking, aggregation) |
|
| 133 |
+
|
| 134 |
+
### Component Distribution
|
| 135 |
+
|
| 136 |
+
| Component | Frequency |
|
| 137 |
+
|-----------|-----------|
|
| 138 |
+
| Thematic content | 92.8% |
|
| 139 |
+
| Organization type | 39.9% |
|
| 140 |
+
| Organization location | 17.7% |
|
| 141 |
+
| Programme (funding) | 17.6% |
|
| 142 |
+
| Time expressions | 10.7% |
|
| 143 |
+
| Project location | 10.4% |
|
| 144 |
+
| Year (specific) | 7.8% |
|
| 145 |
+
| Organization name | 7.3% |
|
| 146 |
+
|
| 147 |
+
## Examples
|
| 148 |
+
|
| 149 |
+
### Example 1: Catalan Query (Discover)
|
| 150 |
+
|
| 151 |
+
**Original query:** `"Projectes on la UPC és coordinadora en l'àmbit de la ciberseguretat"`
|
| 152 |
+
|
| 153 |
+
```json
|
| 154 |
+
{
|
| 155 |
+
"doc_type": "projects",
|
| 156 |
+
"filters": {
|
| 157 |
+
"programme": null,
|
| 158 |
+
"funding_level": null,
|
| 159 |
+
"year": null,
|
| 160 |
+
"location": null,
|
| 161 |
+
"location_level": null
|
| 162 |
+
},
|
| 163 |
+
"organisations": [
|
| 164 |
+
{
|
| 165 |
+
"type": "university",
|
| 166 |
+
"name": "UPC",
|
| 167 |
+
"location": null,
|
| 168 |
+
"location_level": null
|
| 169 |
+
}
|
| 170 |
+
],
|
| 171 |
+
"semantic_query": "ciberseguretat",
|
| 172 |
+
"query_rewrite": "Llista de projectes de la UPC sobre ciberseguretat",
|
| 173 |
+
"meta": {
|
| 174 |
+
"id": "TRAIN_488",
|
| 175 |
+
"source": "synthetic",
|
| 176 |
+
"lang": "CA",
|
| 177 |
+
"original_query": "Projectes on la UPC és coordinadora en l'àmbit de la ciberseguretat",
|
| 178 |
+
"intent": "Discover",
|
| 179 |
+
"style": "Concise",
|
| 180 |
+
"components": ["Scope", "Organisation Name", "Content", "Role Qualifier"],
|
| 181 |
+
"resolvability": "Partial",
|
| 182 |
+
"notes": "No es pot filtrar pel rol de 'coordinadora'"
|
| 183 |
+
}
|
| 184 |
+
}
|
| 185 |
+
```
|
| 186 |
+
|
| 187 |
+
### Example 2: Spanish Query with Filters
|
| 188 |
+
|
| 189 |
+
**Original query:** `"proyectos de inteligencia artificial financiados por H2020 desde 2019"`
|
| 190 |
+
|
| 191 |
+
```json
|
| 192 |
+
{
|
| 193 |
+
"doc_type": "projects",
|
| 194 |
+
"filters": {
|
| 195 |
+
"programme": "Horizon 2020",
|
| 196 |
+
"funding_level": null,
|
| 197 |
+
"year": ">=2019",
|
| 198 |
+
"location": null,
|
| 199 |
+
"location_level": null
|
| 200 |
+
},
|
| 201 |
+
"organisations": [],
|
| 202 |
+
"semantic_query": "inteligencia artificial",
|
| 203 |
+
"query_rewrite": "Proyectos sobre inteligencia artificial del programa H2020 desde 2019",
|
| 204 |
+
"meta": {
|
| 205 |
+
"lang": "ES",
|
| 206 |
+
"intent": "Discover",
|
| 207 |
+
"resolvability": "Direct"
|
| 208 |
+
}
|
| 209 |
+
}
|
| 210 |
+
```
|
| 211 |
+
|
| 212 |
+
### Example 3: English Quantify Query
|
| 213 |
+
|
| 214 |
+
**Original query:** `"how many universities participated in quantum computing projects?"`
|
| 215 |
+
|
| 216 |
+
```json
|
| 217 |
+
{
|
| 218 |
+
"doc_type": "projects",
|
| 219 |
+
"filters": {
|
| 220 |
+
"programme": null,
|
| 221 |
+
"funding_level": null,
|
| 222 |
+
"year": null,
|
| 223 |
+
"location": null,
|
| 224 |
+
"location_level": null
|
| 225 |
+
},
|
| 226 |
+
"organisations": [
|
| 227 |
+
{
|
| 228 |
+
"type": "university",
|
| 229 |
+
"name": null,
|
| 230 |
+
"location": null,
|
| 231 |
+
"location_level": null
|
| 232 |
+
}
|
| 233 |
+
],
|
| 234 |
+
"semantic_query": "quantum computing",
|
| 235 |
+
"query_rewrite": "Count of universities participating in quantum computing projects",
|
| 236 |
+
"meta": {
|
| 237 |
+
"lang": "EN",
|
| 238 |
+
"intent": "Quantify",
|
| 239 |
+
"resolvability": "Partial",
|
| 240 |
+
"notes": "Aggregation (count) cannot be expressed in schema"
|
| 241 |
+
}
|
| 242 |
+
}
|
| 243 |
+
```
|
| 244 |
+
|
| 245 |
+
## Usage
|
| 246 |
+
|
| 247 |
+
### Loading the Dataset
|
| 248 |
+
|
| 249 |
+
```python
|
| 250 |
+
from datasets import load_dataset
|
| 251 |
+
|
| 252 |
+
dataset = load_dataset("SIRIS-Lab/impuls-query-parsing")
|
| 253 |
+
|
| 254 |
+
# Access splits
|
| 255 |
+
train_data = dataset["train"]
|
| 256 |
+
test_data = dataset["test"]
|
| 257 |
+
|
| 258 |
+
# Example
|
| 259 |
+
print(train_data[0]["meta"]["original_query"])
|
| 260 |
+
print(train_data[0]["semantic_query"])
|
| 261 |
+
```
|
| 262 |
+
|
| 263 |
+
### For Training with Transformers
|
| 264 |
+
|
| 265 |
+
```python
|
| 266 |
+
from datasets import load_dataset
|
| 267 |
+
|
| 268 |
+
dataset = load_dataset("SIRIS-Lab/impuls-query-parsing")
|
| 269 |
+
|
| 270 |
+
def format_for_training(example):
|
| 271 |
+
# Format as instruction-following
|
| 272 |
+
return {
|
| 273 |
+
"instruction": "Convert this query to structured JSON for R&D project search.",
|
| 274 |
+
"input": example["meta"]["original_query"],
|
| 275 |
+
"output": json.dumps(example, ensure_ascii=False, indent=2)
|
| 276 |
+
}
|
| 277 |
+
|
| 278 |
+
formatted = dataset.map(format_for_training)
|
| 279 |
+
```
|
| 280 |
+
|
| 281 |
+
## Data Collection
|
| 282 |
+
|
| 283 |
+
### Training Data
|
| 284 |
+
The training set was **synthetically generated** using:
|
| 285 |
+
- Controlled vocabularies (funding programmes, organization names, locations)
|
| 286 |
+
- Thematic keywords extracted from real R&D project titles and abstracts
|
| 287 |
+
- Domain-specific templates mirroring realistic user queries
|
| 288 |
+
- Balanced language distribution across Catalan, Spanish, and English
|
| 289 |
+
|
| 290 |
+
### Test Data
|
| 291 |
+
The test set contains **real queries from domain experts**:
|
| 292 |
+
- Collected from researchers and R&I policy analysts
|
| 293 |
+
- Elicited through structured questionnaires asking for typical information needs
|
| 294 |
+
- Manually annotated with gold-standard JSON structures
|
| 295 |
+
|
| 296 |
+
## Intended Use
|
| 297 |
+
|
| 298 |
+
This dataset is designed for:
|
| 299 |
+
- Training query parsing models for R&D project search systems
|
| 300 |
+
- Evaluating multilingual NLU capabilities for Catalan, Spanish, and English
|
| 301 |
+
- Benchmarking structured output generation from natural language
|
| 302 |
+
- Research on semantic parsing for specialized domains
|
| 303 |
+
|
| 304 |
+
## Limitations
|
| 305 |
+
|
| 306 |
+
- **Domain-specific**: Focused on R&D project search; may not generalize to other domains
|
| 307 |
+
- **Schema constraints**: Some query types (ranking, complex aggregations) cannot be fully represented
|
| 308 |
+
- **Synthetic training data**: Training examples are template-generated, which may limit diversity
|
| 309 |
+
- **Language balance**: Test set has more English queries than training distribution
|
| 310 |
+
|
| 311 |
+
## Citation
|
| 312 |
+
|
| 313 |
+
```bibtex
|
| 314 |
+
@misc{impuls-query-parsing-2024,
|
| 315 |
+
author = {SIRIS Academic},
|
| 316 |
+
title = {IMPULS Query Parsing Dataset: Multilingual Queries for R&D Semantic Search},
|
| 317 |
+
year = {2024},
|
| 318 |
+
publisher = {Hugging Face},
|
| 319 |
+
howpublished = {\url{https://huggingface.co/datasets/SIRIS-Lab/impuls-query-parsing}}
|
| 320 |
+
}
|
| 321 |
+
```
|
| 322 |
+
|
| 323 |
+
## Acknowledgments
|
| 324 |
+
|
| 325 |
+
- **[Barcelona Supercomputing Center (BSC)](https://www.bsc.es/)** - AINA project infrastructure
|
| 326 |
+
- **[Generalitat de Catalunya](https://web.gencat.cat/)** - Funding and RIS3-MCAT platform
|
| 327 |
+
- **[AINA Project](https://projecteaina.cat/)** - AINA Challenge 2024 framework
|
| 328 |
+
|
| 329 |
+
## License
|
| 330 |
+
|
| 331 |
+
Apache 2.0
|
| 332 |
+
|
| 333 |
+
## Links
|
| 334 |
+
|
| 335 |
+
- **Query Parser Model**: [SIRIS-Lab/impuls-salamandra-7b-query-parser](https://huggingface.co/SIRIS-Lab/impuls-salamandra-7b-query-parser)
|
| 336 |
+
- **Project Repository**: [github.com/sirisacademic/aina-impulse](https://github.com/sirisacademic/aina-impulse)
|
| 337 |
+
- **SIRIS Academic**: [sirisacademic.com](https://sirisacademic.com/)
|