PabloAccuosto commited on
Commit
a8aaa61
·
verified ·
1 Parent(s): c58221a

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +335 -52
README.md CHANGED
@@ -1,54 +1,337 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: original_query
5
- dtype: string
6
- - name: semantic_query
7
- dtype: string
8
- - name: query_rewrite
9
- dtype: string
10
- - name: programme
11
- dtype: string
12
- - name: year
13
- dtype: string
14
- - name: location
15
- dtype: string
16
- - name: location_level
17
- dtype: string
18
- - name: organisations
19
- dtype: string
20
- - name: lang
21
- dtype: string
22
- - name: intent
23
- dtype: string
24
- - name: resolvability
25
- dtype: string
26
- - name: source
27
- dtype: string
28
- - name: id
29
- dtype: string
30
- - name: notes
31
- dtype: string
32
- - name: components
33
- dtype: string
34
- - name: full_json
35
- dtype: string
36
- - name: filters_json
37
- dtype: string
38
- splits:
39
- - name: train
40
- num_bytes: 809494
41
- num_examples: 682
42
- - name: test
43
- num_bytes: 116285
44
- num_examples: 100
45
- download_size: 183002
46
- dataset_size: 925779
47
- configs:
48
- - config_name: default
49
- data_files:
50
- - split: train
51
- path: data/train-*
52
- - split: test
53
- path: data/test-*
54
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ language:
4
+ - ca
5
+ - es
6
+ - en
7
+ task_categories:
8
+ - text-generation
9
+ - text2text-generation
10
+ task_ids:
11
+ - semantic-parsing
12
+ tags:
13
+ - query-parsing
14
+ - structured-output
15
+ - json-generation
16
+ - multilingual
17
+ - catalan
18
+ - spanish
19
+ - R&D
20
+ - semantic-search
21
+ - AINA
22
+ size_categories:
23
+ - n<1K
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  ---
25
+
26
+ # IMPULS Query Parsing Dataset
27
+
28
+ A multilingual dataset for training and evaluating query parsing models that convert natural language queries into structured JSON for R&D project semantic search.
29
+
30
+ ## Dataset Description
31
+
32
+ This dataset was created as part of the **IMPULS project** (AINA Challenge 2024), a collaboration between [SIRIS Academic](https://sirisacademic.com/) and [Generalitat de Catalunya](https://web.gencat.cat/) to build a multilingual semantic search system for R&D ecosystems.
33
+
34
+ The dataset contains natural language queries in **Catalan, Spanish, and English** paired with their structured JSON representations, designed for training models to:
35
+ - Extract semantic search terms from natural language
36
+ - Identify structured filters (funding programme, year, location, organization type)
37
+ - Detect query language and intent
38
+
39
+ ### Supported Tasks
40
+
41
+ - **Query Parsing / Semantic Parsing**: Convert natural language to structured JSON
42
+ - **Information Extraction**: Extract entities and filters from queries
43
+ - **Multilingual NLU**: Understanding queries across CA/ES/EN
44
+
45
+ ## Dataset Structure
46
+
47
+ ### Data Splits
48
+
49
+ | Split | Examples | Description |
50
+ |-------|----------|-------------|
51
+ | `train` | 682 | Synthetic, template-generated queries |
52
+ | `test` | 100 | Real queries from domain experts |
53
+
54
+ ### Schema
55
+
56
+ Each example contains a structured JSON with the following fields:
57
+
58
+ ```json
59
+ {
60
+ "doc_type": "projects",
61
+ "filters": {
62
+ "programme": "Horizon 2020 | FEDER | SIFECAT | null",
63
+ "funding_level": "string | null",
64
+ "year": ">=2020 | 2015-2020 | null",
65
+ "location": "Catalunya | Spain | null",
66
+ "location_level": "region | province | country | null"
67
+ },
68
+ "organisations": [
69
+ {
70
+ "type": "university | research_center | hospital | company | null",
71
+ "name": "UPC | CSIC | null",
72
+ "location": "Barcelona | null",
73
+ "location_level": "province | region | null"
74
+ }
75
+ ],
76
+ "semantic_query": "intel·ligència artificial salut",
77
+ "query_rewrite": "Human-readable interpretation of the query",
78
+ "meta": {
79
+ "id": "TRAIN_001",
80
+ "source": "synthetic | expert",
81
+ "lang": "CA | ES | EN",
82
+ "original_query": "The original natural language query",
83
+ "intent": "Discover | Quantify",
84
+ "style": "Concise | Verbose | Technical",
85
+ "components": ["Content", "Programme", "Year", "Location"],
86
+ "resolvability": "Direct | Adapted | Partial",
87
+ "notes": "Optional notes about interpretation"
88
+ }
89
+ }
90
+ ```
91
+
92
+ ### Field Descriptions
93
+
94
+ | Field | Description |
95
+ |-------|-------------|
96
+ | `doc_type` | Document type to search (always "projects") |
97
+ | `filters.programme` | Funding programme (H2020, Horizon Europe, FEDER, SIFECAT, etc.) |
98
+ | `filters.year` | Year filter (single year, range, or comparison like ">=2020") |
99
+ | `filters.location` | Geographic filter |
100
+ | `filters.location_level` | Geographic granularity (country, region, province) |
101
+ | `organisations` | List of organization filters with type, name, and location |
102
+ | `semantic_query` | Core thematic content for vector search |
103
+ | `query_rewrite` | Human-readable interpretation |
104
+ | `meta.original_query` | The original natural language query |
105
+ | `meta.lang` | Query language (CA/ES/EN) |
106
+ | `meta.intent` | Query intent (Discover/Quantify) |
107
+ | `meta.resolvability` | How well the query maps to the schema |
108
+
109
+ ## Dataset Statistics
110
+
111
+ ### Language Distribution
112
+
113
+ | Language | Training | Test |
114
+ |----------|----------|------|
115
+ | Catalan (CA) | ~33% | ~33% |
116
+ | Spanish (ES) | ~33% | ~21% |
117
+ | English (EN) | ~33% | ~46% |
118
+
119
+ ### Intent Distribution
120
+
121
+ | Intent | Count | Percentage |
122
+ |--------|-------|------------|
123
+ | Discover | 600 | 88.0% |
124
+ | Quantify | 82 | 12.0% |
125
+
126
+ ### Resolvability Distribution
127
+
128
+ | Type | Count | Percentage | Description |
129
+ |------|-------|------------|-------------|
130
+ | Direct | 529 | 77.6% | Fully mappable to schema |
131
+ | Adapted | 15 | 2.2% | Requires interpretation |
132
+ | Partial | 138 | 20.2% | Cannot fully express (ranking, aggregation) |
133
+
134
+ ### Component Distribution
135
+
136
+ | Component | Frequency |
137
+ |-----------|-----------|
138
+ | Thematic content | 92.8% |
139
+ | Organization type | 39.9% |
140
+ | Organization location | 17.7% |
141
+ | Programme (funding) | 17.6% |
142
+ | Time expressions | 10.7% |
143
+ | Project location | 10.4% |
144
+ | Year (specific) | 7.8% |
145
+ | Organization name | 7.3% |
146
+
147
+ ## Examples
148
+
149
+ ### Example 1: Catalan Query (Discover)
150
+
151
+ **Original query:** `"Projectes on la UPC és coordinadora en l'àmbit de la ciberseguretat"`
152
+
153
+ ```json
154
+ {
155
+ "doc_type": "projects",
156
+ "filters": {
157
+ "programme": null,
158
+ "funding_level": null,
159
+ "year": null,
160
+ "location": null,
161
+ "location_level": null
162
+ },
163
+ "organisations": [
164
+ {
165
+ "type": "university",
166
+ "name": "UPC",
167
+ "location": null,
168
+ "location_level": null
169
+ }
170
+ ],
171
+ "semantic_query": "ciberseguretat",
172
+ "query_rewrite": "Llista de projectes de la UPC sobre ciberseguretat",
173
+ "meta": {
174
+ "id": "TRAIN_488",
175
+ "source": "synthetic",
176
+ "lang": "CA",
177
+ "original_query": "Projectes on la UPC és coordinadora en l'àmbit de la ciberseguretat",
178
+ "intent": "Discover",
179
+ "style": "Concise",
180
+ "components": ["Scope", "Organisation Name", "Content", "Role Qualifier"],
181
+ "resolvability": "Partial",
182
+ "notes": "No es pot filtrar pel rol de 'coordinadora'"
183
+ }
184
+ }
185
+ ```
186
+
187
+ ### Example 2: Spanish Query with Filters
188
+
189
+ **Original query:** `"proyectos de inteligencia artificial financiados por H2020 desde 2019"`
190
+
191
+ ```json
192
+ {
193
+ "doc_type": "projects",
194
+ "filters": {
195
+ "programme": "Horizon 2020",
196
+ "funding_level": null,
197
+ "year": ">=2019",
198
+ "location": null,
199
+ "location_level": null
200
+ },
201
+ "organisations": [],
202
+ "semantic_query": "inteligencia artificial",
203
+ "query_rewrite": "Proyectos sobre inteligencia artificial del programa H2020 desde 2019",
204
+ "meta": {
205
+ "lang": "ES",
206
+ "intent": "Discover",
207
+ "resolvability": "Direct"
208
+ }
209
+ }
210
+ ```
211
+
212
+ ### Example 3: English Quantify Query
213
+
214
+ **Original query:** `"how many universities participated in quantum computing projects?"`
215
+
216
+ ```json
217
+ {
218
+ "doc_type": "projects",
219
+ "filters": {
220
+ "programme": null,
221
+ "funding_level": null,
222
+ "year": null,
223
+ "location": null,
224
+ "location_level": null
225
+ },
226
+ "organisations": [
227
+ {
228
+ "type": "university",
229
+ "name": null,
230
+ "location": null,
231
+ "location_level": null
232
+ }
233
+ ],
234
+ "semantic_query": "quantum computing",
235
+ "query_rewrite": "Count of universities participating in quantum computing projects",
236
+ "meta": {
237
+ "lang": "EN",
238
+ "intent": "Quantify",
239
+ "resolvability": "Partial",
240
+ "notes": "Aggregation (count) cannot be expressed in schema"
241
+ }
242
+ }
243
+ ```
244
+
245
+ ## Usage
246
+
247
+ ### Loading the Dataset
248
+
249
+ ```python
250
+ from datasets import load_dataset
251
+
252
+ dataset = load_dataset("SIRIS-Lab/impuls-query-parsing")
253
+
254
+ # Access splits
255
+ train_data = dataset["train"]
256
+ test_data = dataset["test"]
257
+
258
+ # Example
259
+ print(train_data[0]["meta"]["original_query"])
260
+ print(train_data[0]["semantic_query"])
261
+ ```
262
+
263
+ ### For Training with Transformers
264
+
265
+ ```python
266
+ from datasets import load_dataset
267
+
268
+ dataset = load_dataset("SIRIS-Lab/impuls-query-parsing")
269
+
270
+ def format_for_training(example):
271
+ # Format as instruction-following
272
+ return {
273
+ "instruction": "Convert this query to structured JSON for R&D project search.",
274
+ "input": example["meta"]["original_query"],
275
+ "output": json.dumps(example, ensure_ascii=False, indent=2)
276
+ }
277
+
278
+ formatted = dataset.map(format_for_training)
279
+ ```
280
+
281
+ ## Data Collection
282
+
283
+ ### Training Data
284
+ The training set was **synthetically generated** using:
285
+ - Controlled vocabularies (funding programmes, organization names, locations)
286
+ - Thematic keywords extracted from real R&D project titles and abstracts
287
+ - Domain-specific templates mirroring realistic user queries
288
+ - Balanced language distribution across Catalan, Spanish, and English
289
+
290
+ ### Test Data
291
+ The test set contains **real queries from domain experts**:
292
+ - Collected from researchers and R&I policy analysts
293
+ - Elicited through structured questionnaires asking for typical information needs
294
+ - Manually annotated with gold-standard JSON structures
295
+
296
+ ## Intended Use
297
+
298
+ This dataset is designed for:
299
+ - Training query parsing models for R&D project search systems
300
+ - Evaluating multilingual NLU capabilities for Catalan, Spanish, and English
301
+ - Benchmarking structured output generation from natural language
302
+ - Research on semantic parsing for specialized domains
303
+
304
+ ## Limitations
305
+
306
+ - **Domain-specific**: Focused on R&D project search; may not generalize to other domains
307
+ - **Schema constraints**: Some query types (ranking, complex aggregations) cannot be fully represented
308
+ - **Synthetic training data**: Training examples are template-generated, which may limit diversity
309
+ - **Language balance**: Test set has more English queries than training distribution
310
+
311
+ ## Citation
312
+
313
+ ```bibtex
314
+ @misc{impuls-query-parsing-2024,
315
+ author = {SIRIS Academic},
316
+ title = {IMPULS Query Parsing Dataset: Multilingual Queries for R&D Semantic Search},
317
+ year = {2024},
318
+ publisher = {Hugging Face},
319
+ howpublished = {\url{https://huggingface.co/datasets/SIRIS-Lab/impuls-query-parsing}}
320
+ }
321
+ ```
322
+
323
+ ## Acknowledgments
324
+
325
+ - **[Barcelona Supercomputing Center (BSC)](https://www.bsc.es/)** - AINA project infrastructure
326
+ - **[Generalitat de Catalunya](https://web.gencat.cat/)** - Funding and RIS3-MCAT platform
327
+ - **[AINA Project](https://projecteaina.cat/)** - AINA Challenge 2024 framework
328
+
329
+ ## License
330
+
331
+ Apache 2.0
332
+
333
+ ## Links
334
+
335
+ - **Query Parser Model**: [SIRIS-Lab/impuls-salamandra-7b-query-parser](https://huggingface.co/SIRIS-Lab/impuls-salamandra-7b-query-parser)
336
+ - **Project Repository**: [github.com/sirisacademic/aina-impulse](https://github.com/sirisacademic/aina-impulse)
337
+ - **SIRIS Academic**: [sirisacademic.com](https://sirisacademic.com/)