--- license: apache-2.0 language: - ca - es - en task_categories: - text-generation tags: - query-parsing - structured-output - json-generation - multilingual - catalan - spanish - R&D - semantic-search - AINA - semantic-parsing size_categories: - n<1K --- # IMPULS Query Parsing Dataset A multilingual dataset for training and evaluating query parsing models that convert natural language queries into structured JSON for R&D project semantic search. ## Dataset Description This dataset was created as part of the **IMPULS project** (AINA Challenge 2024), a collaboration between [SIRIS Academic](https://sirisacademic.com/) and [Generalitat de Catalunya](https://web.gencat.cat/) to build a multilingual semantic search system for R&D ecosystems. The dataset contains natural language queries in **Catalan, Spanish, and English** paired with their structured JSON representations, designed for training models to: - Extract semantic search terms from natural language - Identify structured filters (funding programme, year, location, organization type) - Detect query language and intent ### Supported Tasks - **Query Parsing / Semantic Parsing**: Convert natural language to structured JSON - **Information Extraction**: Extract entities and filters from queries - **Multilingual NLU**: Understanding queries across CA/ES/EN ## Dataset Structure ### Data Splits | Split | Examples | Description | |-------|----------|-------------| | `train` | 682 | Synthetic, template-generated queries | | `test` | 100 | Real queries from domain experts | ### Schema Each example contains a structured JSON with the following fields: ```json { "doc_type": "projects", "filters": { "programme": "Horizon 2020 | FEDER | SIFECAT | null", "funding_level": "string | null", "year": ">=2020 | 2015-2020 | null", "location": "Catalunya | Spain | null", "location_level": "region | province | country | null" }, "organisations": [ { "type": "university | research_center | hospital | company | null", "name": "UPC | CSIC | null", "location": "Barcelona | null", "location_level": "province | region | null" } ], "semantic_query": "intel·ligència artificial salut", "query_rewrite": "Human-readable interpretation of the query", "meta": { "id": "TRAIN_001", "source": "synthetic | expert", "lang": "CA | ES | EN", "original_query": "The original natural language query", "intent": "Discover | Quantify", "style": "Concise | Verbose | Technical", "components": ["Content", "Programme", "Year", "Location"], "resolvability": "Direct | Adapted | Partial", "notes": "Optional notes about interpretation" } } ``` ### Field Descriptions | Field | Description | |-------|-------------| | `doc_type` | Document type to search (always "projects") | | `filters.programme` | Funding programme (H2020, Horizon Europe, FEDER, SIFECAT, etc.) | | `filters.year` | Year filter (single year, range, or comparison like ">=2020") | | `filters.location` | Geographic filter | | `filters.location_level` | Geographic granularity (country, region, province) | | `organisations` | List of organization filters with type, name, and location | | `semantic_query` | Core thematic content for vector search | | `query_rewrite` | Human-readable interpretation | | `meta.original_query` | The original natural language query | | `meta.lang` | Query language (CA/ES/EN) | | `meta.intent` | Query intent (Discover/Quantify) | | `meta.resolvability` | How well the query maps to the schema | ## Dataset Statistics ### Language Distribution | Language | Training | Test | |----------|----------|------| | Catalan (CA) | ~33% | ~33% | | Spanish (ES) | ~33% | ~21% | | English (EN) | ~33% | ~46% | ### Intent Distribution | Intent | Count | Percentage | |--------|-------|------------| | Discover | 600 | 88.0% | | Quantify | 82 | 12.0% | ### Resolvability Distribution | Type | Count | Percentage | Description | |------|-------|------------|-------------| | Direct | 529 | 77.6% | Fully mappable to schema | | Adapted | 15 | 2.2% | Requires interpretation | | Partial | 138 | 20.2% | Cannot fully express (ranking, aggregation) | ### Component Distribution | Component | Frequency | |-----------|-----------| | Thematic content | 92.8% | | Organization type | 39.9% | | Organization location | 17.7% | | Programme (funding) | 17.6% | | Time expressions | 10.7% | | Project location | 10.4% | | Year (specific) | 7.8% | | Organization name | 7.3% | ## Examples ### Example 1: Catalan Query (Discover) **Original query:** `"Projectes on la UPC és coordinadora en l'àmbit de la ciberseguretat"` ```json { "doc_type": "projects", "filters": { "programme": null, "funding_level": null, "year": null, "location": null, "location_level": null }, "organisations": [ { "type": "university", "name": "UPC", "location": null, "location_level": null } ], "semantic_query": "ciberseguretat", "query_rewrite": "Llista de projectes de la UPC sobre ciberseguretat", "meta": { "id": "TRAIN_488", "source": "synthetic", "lang": "CA", "original_query": "Projectes on la UPC és coordinadora en l'àmbit de la ciberseguretat", "intent": "Discover", "style": "Concise", "components": ["Scope", "Organisation Name", "Content", "Role Qualifier"], "resolvability": "Partial", "notes": "No es pot filtrar pel rol de 'coordinadora'" } } ``` ### Example 2: Spanish Query with Filters **Original query:** `"proyectos de inteligencia artificial financiados por H2020 desde 2019"` ```json { "doc_type": "projects", "filters": { "programme": "Horizon 2020", "funding_level": null, "year": ">=2019", "location": null, "location_level": null }, "organisations": [], "semantic_query": "inteligencia artificial", "query_rewrite": "Proyectos sobre inteligencia artificial del programa H2020 desde 2019", "meta": { "lang": "ES", "intent": "Discover", "resolvability": "Direct" } } ``` ### Example 3: English Quantify Query **Original query:** `"how many universities participated in quantum computing projects?"` ```json { "doc_type": "projects", "filters": { "programme": null, "funding_level": null, "year": null, "location": null, "location_level": null }, "organisations": [ { "type": "university", "name": null, "location": null, "location_level": null } ], "semantic_query": "quantum computing", "query_rewrite": "Count of universities participating in quantum computing projects", "meta": { "lang": "EN", "intent": "Quantify", "resolvability": "Partial", "notes": "Aggregation (count) cannot be expressed in schema" } } ``` ## Usage ### Loading the Dataset ```python from datasets import load_dataset dataset = load_dataset("SIRIS-Lab/impuls-query-parsing") # Access splits train_data = dataset["train"] test_data = dataset["test"] # Example print(train_data[0]["meta"]["original_query"]) print(train_data[0]["semantic_query"]) ``` ### For Training with Transformers ```python from datasets import load_dataset dataset = load_dataset("SIRIS-Lab/impuls-query-parsing") def format_for_training(example): # Format as instruction-following return { "instruction": "Convert this query to structured JSON for R&D project search.", "input": example["meta"]["original_query"], "output": json.dumps(example, ensure_ascii=False, indent=2) } formatted = dataset.map(format_for_training) ``` ## Data Collection ### Training Data The training set was **synthetically generated** using: - Controlled vocabularies (funding programmes, organization names, locations) - Thematic keywords extracted from real R&D project titles and abstracts - Domain-specific templates mirroring realistic user queries - Balanced language distribution across Catalan, Spanish, and English ### Test Data The test set contains **real queries from domain experts**: - Collected from researchers and R&I policy analysts - Elicited through structured questionnaires asking for typical information needs - Manually annotated with gold-standard JSON structures ## Intended Use This dataset is designed for: - Training query parsing models for R&D project search systems - Evaluating multilingual NLU capabilities for Catalan, Spanish, and English - Benchmarking structured output generation from natural language - Research on semantic parsing for specialized domains ## Limitations - **Domain-specific**: Focused on R&D project search; may not generalize to other domains - **Schema constraints**: Some query types (ranking, complex aggregations) cannot be fully represented - **Synthetic training data**: Training examples are template-generated, which may limit diversity - **Language balance**: Test set has more English queries than training distribution ## Citation ```bibtex @misc{impuls-query-parsing-2024, author = {SIRIS Academic}, title = {IMPULS Query Parsing Dataset: Multilingual Queries for R&D Semantic Search}, year = {2024}, publisher = {Hugging Face}, howpublished = {\url{https://huggingface.co/datasets/SIRIS-Lab/impuls-query-parsing}} } ``` ## Acknowledgments - **[Barcelona Supercomputing Center (BSC)](https://www.bsc.es/)** - AINA project infrastructure - **[Generalitat de Catalunya](https://web.gencat.cat/)** - Funding and RIS3-MCAT platform - **[AINA Project](https://projecteaina.cat/)** - AINA Challenge 2024 framework ## License Apache 2.0 ## Links - **Query Parser Model**: [SIRIS-Lab/impuls-salamandra-7b-query-parser](https://huggingface.co/SIRIS-Lab/impuls-salamandra-7b-query-parser) - **Project Repository**: [github.com/sirisacademic/aina-impulse](https://github.com/sirisacademic/aina-impulse) - **SIRIS Academic**: [sirisacademic.com](https://sirisacademic.com/)