Samarth0710 commited on
Commit
b3df2f9
·
verified ·
1 Parent(s): df18404

Add dataset card

Browse files
Files changed (1) hide show
  1. README.md +94 -21
README.md CHANGED
@@ -1,23 +1,96 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: image
5
- dtype: image
6
- - name: label
7
- dtype: string
8
- - name: gesture_type
9
- dtype: string
10
- - name: label_id
11
- dtype: int64
12
- splits:
13
- - name: train
14
- num_bytes: 756277434.197
15
- num_examples: 28431
16
- download_size: 803008855
17
- dataset_size: 756277434.197
18
- configs:
19
- - config_name: default
20
- data_files:
21
- - split: train
22
- path: data/train-*
23
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ task_categories:
4
+ - image-classification
5
+ - zero-shot-image-classification
6
+ language:
7
+ - en
8
+ tags:
9
+ - bharatanatyam
10
+ - mudra
11
+ - hand-gestures
12
+ - indian-classical-dance
13
+ - computer-vision
14
+ size_categories:
15
+ - 10K<n<100K
 
 
 
 
 
 
 
16
  ---
17
+
18
+ # Bharatanatyam Mudra Dataset
19
+
20
+ ## Dataset Description
21
+
22
+ The Bharatanatyam Mudra Dataset contains **28,431 images** of hand gestures (mudras) from Bharatanatyam, a classical Indian dance form. The dataset was collected from 15 volunteers in a studio environment and includes both single-hand and double-hand gestures.
23
+
24
+ ### Dataset Statistics
25
+ - **Total Images**: 28,431
26
+ - **Single Hand Gestures (Asamyukta Hastas)**: 15,396 images across 29 classes
27
+ - **Double Hand Gestures (Samyukta Hastas)**: 13,035 images across 21 classes
28
+ - **Total Classes**: 50 different mudras
29
+
30
+ ## Dataset Structure
31
+
32
+ The dataset is organized into 50 classes representing different mudras:
33
+
34
+ ### Single Hand Gestures (Asamyukta Hastas) - 29 classes
35
+ - Pathaka, Tripathaka, Ardhapathaka, Mayura, Katrimukha
36
+ - Ardhachandran, Aralam, Shukatundam, Mushti, Sikharam
37
+ - Kapith, Katakamukha_1, Katakamukha_2, Katakamukha_3, Suchi
38
+ - Chandrakala, Padmakosha, Sarpasirsha, Mrigasirsha, Simhamukham
39
+ - Kangulam, Alapadmam, Mukulam, Chaturam, Bramaram
40
+ - Hamsasyam, Hamsapaksham, Tamarachudam, Trishulam
41
+
42
+ ### Double Hand Gestures (Samyukta Hastas) - 21 classes
43
+ - Anjali, Kapotham, Karkatta, Swastikam, Pushpaputam
44
+ - Shivalinga, Katakavardhana, Kartariswastika, Sakata, Shanka
45
+ - Chakra, Samputa, Pasha, Kilaka, Matsya
46
+ - Kurma, Varaha, Garuda, Nagabandha, Khatva, Berunda
47
+
48
+ ## Data Fields
49
+
50
+ - `image`: PIL Image of the mudra
51
+ - `label`: String label of the mudra name
52
+ - `label_id`: Numerical ID for the label
53
+ - `gesture_type`: Either "single_hand" or "double_hand"
54
+
55
+ ## Usage
56
+
57
+ ```python
58
+ from datasets import load_dataset
59
+
60
+ # Load the dataset
61
+ dataset = load_dataset("samarth/bharatanatyam-mudra-dataset")
62
+
63
+ # Access the data
64
+ train_data = dataset["train"]
65
+ print(f"Number of samples: {len(train_data)}")
66
+ print(f"Features: {train_data.features}")
67
+
68
+ # Example: Get first image and label
69
+ sample = train_data[0]
70
+ image = sample["image"]
71
+ label = sample["label"]
72
+ print(f"Label: {label}")
73
+ ```
74
+
75
+ ## Applications
76
+
77
+ This dataset can be used for:
78
+ - Hand gesture recognition and classification
79
+ - Cultural heritage preservation through AI
80
+ - Computer vision research on hand pose estimation
81
+ - Educational applications for learning Bharatanatyam
82
+ - Transfer learning for other hand gesture datasets
83
+
84
+ ## Citation and Acknowledgments
85
+
86
+ This data was collected as part of Ph.D. work done under the guidance of **Dr. Sunil T.T**, Professor, College of Engineering, Attingal, Thiruvananthapuram, Kerala, India.
87
+
88
+ For original-sized images or additional information, please contact: **Jisha Raj R** at jisharajr@gmail.com
89
+
90
+ ## License
91
+
92
+ This dataset is available under the MIT License.
93
+
94
+ ## Ethical Considerations
95
+
96
+ This dataset was collected with the consent of volunteers in a controlled studio environment. The dataset represents traditional Indian cultural practices and should be used respectfully, particularly in research and educational contexts.