|
|
import io |
|
|
import torch |
|
|
import numpy as np |
|
|
from datasets import load_dataset |
|
|
from torch.utils.data import Dataset |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def unpack_event_data(item, use_io=True): |
|
|
if use_io: |
|
|
with io.BytesIO(item['data']) as f: |
|
|
raw_data = np.load(f) |
|
|
else: |
|
|
raw_data = np.load(item) |
|
|
header_size = 4 * 2 |
|
|
shape_header = raw_data[:header_size].view(np.uint16) |
|
|
original_shape = tuple(shape_header) |
|
|
|
|
|
packed_body = raw_data[header_size:] |
|
|
unpacked = np.unpackbits(packed_body) |
|
|
|
|
|
num_elements = np.prod(original_shape) |
|
|
event_flat = unpacked[:num_elements] |
|
|
|
|
|
event_data = event_flat.reshape(original_shape).astype(np.float32).copy() |
|
|
return torch.from_numpy(event_data) |
|
|
|
|
|
|
|
|
class I2E_Dataset(Dataset): |
|
|
def __init__(self, cache_dir, load_datasets, split='train', transform=None, target_transform=None): |
|
|
self.ds = load_dataset('UESTC-BICS/I2E', load_datasets, split=split, cache_dir=cache_dir) |
|
|
self.transform = transform |
|
|
self.target_transform = target_transform |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.ds) |
|
|
|
|
|
def __getitem__(self, idx): |
|
|
item = self.ds[idx] |
|
|
event = unpack_event_data(item) |
|
|
label = item['label'] |
|
|
|
|
|
if self.transform: |
|
|
event = self.transform(event) |
|
|
if self.target_transform: |
|
|
label = self.target_transform(label) |
|
|
|
|
|
return event, label |