I2E / load_i2e_datasets.py
UESTC-BICS's picture
Super-squash branch 'main' using huggingface_hub
12021bd verified
raw
history blame
1.9 kB
import io
import torch
import numpy as np
from datasets import load_dataset
from torch.utils.data import Dataset
# =================================================
# Read and unpack function (Your proposed Refactor)
# =================================================
def unpack_event_data(item, use_io=True):
if use_io:
with io.BytesIO(item['data']) as f:
raw_data = np.load(f)
else:
raw_data = np.load(item)
header_size = 4 * 2 # Parse Header (First 4*2=8 bytes)
shape_header = raw_data[:header_size].view(np.uint16) # Assume shape is 4D (T, C, H, W)
original_shape = tuple(shape_header)
packed_body = raw_data[header_size:] # Parse Body
unpacked = np.unpackbits(packed_body) # Unpack bits to binary array
num_elements = np.prod(original_shape) # Extract valid bits (Handle padding)
event_flat = unpacked[:num_elements]
event_data = event_flat.reshape(original_shape).astype(np.float32).copy() # Reshape and convert to Float Tensor
return torch.from_numpy(event_data)
class I2E_Dataset(Dataset):
def __init__(self, cache_dir, load_datasets, split='train', transform=None, target_transform=None):
self.ds = load_dataset('UESTC-BICS/I2E', load_datasets, split=split, cache_dir=cache_dir)
self.transform = transform
self.target_transform = target_transform
def __len__(self):
return len(self.ds)
def __getitem__(self, idx):
item = self.ds[idx]
event = unpack_event_data(item) # Returns [T, C, H, W] Tensor
label = item['label']
if self.transform:
event = self.transform(event)
if self.target_transform:
label = self.target_transform(label)
return event, label