Update README.md
Browse files
README.md
CHANGED
|
@@ -1777,16 +1777,15 @@ configs:
|
|
| 1777 |
license: mit
|
| 1778 |
task_categories:
|
| 1779 |
- image-classification
|
|
|
|
| 1780 |
tags:
|
| 1781 |
- neuromorphic
|
| 1782 |
- snn
|
| 1783 |
-
- spiking
|
| 1784 |
-
- event
|
| 1785 |
- dvs
|
| 1786 |
-
|
| 1787 |
- biology
|
| 1788 |
- pytorch
|
| 1789 |
-
|
| 1790 |
- imagenet
|
| 1791 |
- cifar10
|
| 1792 |
- cifar100
|
|
@@ -1796,6 +1795,8 @@ tags:
|
|
| 1796 |
- fashionmnist
|
| 1797 |
- mini-imagenet
|
| 1798 |
pretty_name: I2E Neuromorphic Dataset
|
|
|
|
|
|
|
| 1799 |
---
|
| 1800 |
|
| 1801 |
|
|
@@ -1814,62 +1815,167 @@ pretty_name: I2E Neuromorphic Dataset
|
|
| 1814 |
|
| 1815 |
## π Introduction
|
| 1816 |
|
| 1817 |
-
This repository
|
| 1818 |
|
| 1819 |
-
**I2E**
|
| 1820 |
|
| 1821 |
-
|
| 1822 |
-
* **SOTA Performance**: Achieves **60.50%** top-1 accuracy on Event-based ImageNet.
|
| 1823 |
-
* **Sim-to-Real Transfer**: Pre-training on I2E data enables **92.5%** accuracy on real-world CIFAR10-DVS, setting a new benchmark.
|
| 1824 |
-
* **Real-Time Conversion**: Enables on-the-fly data augmentation for deep SNN training.
|
| 1825 |
|
|
|
|
| 1826 |
|
| 1827 |
-
|
| 1828 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1829 |
|
| 1830 |
-
###
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1831 |
|
| 1832 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1833 |
|
| 1834 |
```python
|
| 1835 |
-
import
|
| 1836 |
-
import torch
|
| 1837 |
-
from tqdm import tqdm
|
| 1838 |
-
from load_i2e_datasets import I2E_Dataset
|
| 1839 |
-
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com' # Use HF mirror server in some regions
|
| 1840 |
|
| 1841 |
-
|
| 1842 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1843 |
|
| 1844 |
-
|
| 1845 |
-
val_dataset = I2E_Dataset(model_cache_path, load_datasets, split='validation', transform=None, target_transform=None)
|
| 1846 |
-
print(f"Train samples: {len(train_dataset)}, Validation samples: {len(val_dataset)}")
|
| 1847 |
|
| 1848 |
-
|
| 1849 |
-
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=256, shuffle=False, num_workers=32, pin_memory=False)
|
| 1850 |
-
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=256, shuffle=False, num_workers=32, pin_memory=False)
|
| 1851 |
-
```
|
| 1852 |
|
|
|
|
| 1853 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1854 |
|
| 1855 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1856 |
|
| 1857 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1858 |
|
| 1859 |
-
|
|
|
|
| 1860 |
|
| 1861 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1862 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1863 |
|
| 1864 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1865 |
|
| 1866 |
-
|
|
|
|
| 1867 |
|
| 1868 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1869 |
|
| 1870 |
<table border="1">
|
| 1871 |
<tr>
|
| 1872 |
-
<th>
|
| 1873 |
<th align="center">Architecture</th>
|
| 1874 |
<th align="center">Method</th>
|
| 1875 |
<th align="center">Top-1 Acc</th>
|
|
@@ -1891,90 +1997,12 @@ We provide pre-trained models for **I2E-CIFAR** and **I2E-ImageNet**. You can do
|
|
| 1891 |
<td align="center" style="vertical-align: middle;">Transfer-II (Sim-to-Real)</td>
|
| 1892 |
<td align="center" style="vertical-align: middle;"><strong>92.5%</strong></td>
|
| 1893 |
</tr>
|
| 1894 |
-
<!-- I2E-CIFAR10 -->
|
| 1895 |
-
<tr>
|
| 1896 |
-
<td rowspan="3" align="center" style="vertical-align: middle;"><strong>I2E-CIFAR10</strong></td>
|
| 1897 |
-
<td align="center" style="vertical-align: middle;">MS-ResNet18</td>
|
| 1898 |
-
<td align="center" style="vertical-align: middle;">Baseline-I</td>
|
| 1899 |
-
<td align="center" style="vertical-align: middle;">85.07%</td>
|
| 1900 |
-
</tr>
|
| 1901 |
-
<tr>
|
| 1902 |
-
<td align="center" style="vertical-align: middle;">MS-ResNet18</td>
|
| 1903 |
-
<td align="center" style="vertical-align: middle;">Baseline-II</td>
|
| 1904 |
-
<td align="center" style="vertical-align: middle;">89.23%</td>
|
| 1905 |
-
</tr>
|
| 1906 |
-
<tr>
|
| 1907 |
-
<td align="center" style="vertical-align: middle;">MS-ResNet18</td>
|
| 1908 |
-
<td align="center" style="vertical-align: middle;">Transfer-I</td>
|
| 1909 |
-
<td align="center" style="vertical-align: middle;"><strong>90.86%</strong></td>
|
| 1910 |
-
</tr>
|
| 1911 |
-
<!-- I2E-CIFAR100 -->
|
| 1912 |
-
<tr>
|
| 1913 |
-
<td rowspan="3" align="center" style="vertical-align: middle;"><strong>I2E-CIFAR100</strong></td>
|
| 1914 |
-
<td align="center" style="vertical-align: middle;">MS-ResNet18</td>
|
| 1915 |
-
<td align="center" style="vertical-align: middle;">Baseline-I</td>
|
| 1916 |
-
<td align="center" style="vertical-align: middle;">51.32%</td>
|
| 1917 |
-
</tr>
|
| 1918 |
-
<tr>
|
| 1919 |
-
<td align="center" style="vertical-align: middle;">MS-ResNet18</td>
|
| 1920 |
-
<td align="center" style="vertical-align: middle;">Baseline-II</td>
|
| 1921 |
-
<td align="center" style="vertical-align: middle;">60.68%</td>
|
| 1922 |
-
</tr>
|
| 1923 |
-
<tr>
|
| 1924 |
-
<td align="center" style="vertical-align: middle;">MS-ResNet18</td>
|
| 1925 |
-
<td align="center" style="vertical-align: middle;">Transfer-I</td>
|
| 1926 |
-
<td align="center" style="vertical-align: middle;"><strong>64.53%</strong></td>
|
| 1927 |
-
</tr>
|
| 1928 |
-
<!-- I2E-ImageNet -->
|
| 1929 |
-
<tr>
|
| 1930 |
-
<td rowspan="4" align="center" style="vertical-align: middle;"><strong>I2E-ImageNet</strong></td>
|
| 1931 |
-
<td align="center" style="vertical-align: middle;">MS-ResNet18</td>
|
| 1932 |
-
<td align="center" style="vertical-align: middle;">Baseline-I</td>
|
| 1933 |
-
<td align="center" style="vertical-align: middle;">48.30%</td>
|
| 1934 |
-
</tr>
|
| 1935 |
-
<tr>
|
| 1936 |
-
<td align="center" style="vertical-align: middle;">MS-ResNet18</td>
|
| 1937 |
-
<td align="center" style="vertical-align: middle;">Baseline-II</td>
|
| 1938 |
-
<td align="center" style="vertical-align: middle;">57.97%</td>
|
| 1939 |
-
</tr>
|
| 1940 |
-
<tr>
|
| 1941 |
-
<td align="center" style="vertical-align: middle;">MS-ResNet18</td>
|
| 1942 |
-
<td align="center" style="vertical-align: middle;">Transfer-I</td>
|
| 1943 |
-
<td align="center" style="vertical-align: middle;">59.28%</td>
|
| 1944 |
-
</tr>
|
| 1945 |
-
<tr>
|
| 1946 |
-
<td align="center" style="vertical-align: middle;">MS-ResNet34</td>
|
| 1947 |
-
<td align="center" style="vertical-align: middle;">Baseline-II</td>
|
| 1948 |
-
<td align="center" style="vertical-align: middle;"><strong>60.50%</strong></td>
|
| 1949 |
-
</tr>
|
| 1950 |
</table>
|
| 1951 |
|
| 1952 |
-
|
| 1953 |
-
> * **Baseline-I**: Training from scratch with minimal augmentation.
|
| 1954 |
-
> * **Baseline-II**: Training from scratch with full augmentation.
|
| 1955 |
-
> * **Transfer-I**: Fine-tuning from Static ImageNet (or I2E-ImageNet for CIFAR targets).
|
| 1956 |
-
> * **Transfer-II**: Fine-tuning from I2E-CIFAR10.
|
| 1957 |
-
|
| 1958 |
-
## ποΈ Visualization
|
| 1959 |
-
|
| 1960 |
-
Below is the visualization of the I2E conversion process. We illustrate the high-fidelity conversion from static RGB images to dynamic event streams.
|
| 1961 |
-
|
| 1962 |
-
More than 200 additional visualization comparisons can be found in [Visualization.md](./Visualization.md).
|
| 1963 |
|
| 1964 |
-
|
| 1965 |
-
|
| 1966 |
-
<td width="25%" align="center"><img src="./assets/original_1.jpg" alt="Original 1" style="width:100%"></td>
|
| 1967 |
-
<td width="25%" align="center"><img src="./assets/converted_1.gif" alt="Converted 1" style="width:100%"></td>
|
| 1968 |
-
<td width="25%" align="center"><img src="./assets/original_2.jpg" alt="Original 2" style="width:100%"></td>
|
| 1969 |
-
<td width="25%" align="center"><img src="./assets/converted_2.gif" alt="Converted 2" style="width:100%"></td>
|
| 1970 |
-
</tr>
|
| 1971 |
-
<tr>
|
| 1972 |
-
<td width="25%" align="center"><img src="./assets/original_3.jpg" alt="Original 3" style="width:100%"></td>
|
| 1973 |
-
<td width="25%" align="center"><img src="./assets/converted_3.gif" alt="Converted 3" style="width:100%"></td>
|
| 1974 |
-
<td width="25%" align="center"><img src="./assets/original_4.jpg" alt="Original 4" style="width:100%"></td>
|
| 1975 |
-
<td width="25%" align="center"><img src="./assets/converted_4.gif" alt="Converted 4" style="width:100%"></td>
|
| 1976 |
-
</tr>
|
| 1977 |
-
</table>
|
| 1978 |
|
| 1979 |
## π Citation
|
| 1980 |
|
|
|
|
| 1777 |
license: mit
|
| 1778 |
task_categories:
|
| 1779 |
- image-classification
|
| 1780 |
+
- video-classification
|
| 1781 |
tags:
|
| 1782 |
- neuromorphic
|
| 1783 |
- snn
|
| 1784 |
+
- spiking neural networks
|
| 1785 |
+
- event
|
| 1786 |
- dvs
|
|
|
|
| 1787 |
- biology
|
| 1788 |
- pytorch
|
|
|
|
| 1789 |
- imagenet
|
| 1790 |
- cifar10
|
| 1791 |
- cifar100
|
|
|
|
| 1795 |
- fashionmnist
|
| 1796 |
- mini-imagenet
|
| 1797 |
pretty_name: I2E Neuromorphic Dataset
|
| 1798 |
+
language:
|
| 1799 |
+
- en
|
| 1800 |
---
|
| 1801 |
|
| 1802 |
|
|
|
|
| 1815 |
|
| 1816 |
## π Introduction
|
| 1817 |
|
| 1818 |
+
This repository hosts the **I2E-Datasets**, a comprehensive suite of neuromorphic datasets generated using the **I2E (Image-to-Event)** framework. This work has been accepted for **Oral Presentation at AAAI 2026**.
|
| 1819 |
|
| 1820 |
+
**I2E** bridges the data scarcity gap in **Neuromorphic Computing** and **Spiking Neural Networks (SNNs)**. By simulating microsaccadic eye movements via highly parallelized convolution, I2E converts static images into high-fidelity event streams in real-time (>300x faster than prior methods).
|
| 1821 |
|
| 1822 |
+
## ποΈ Visualization
|
|
|
|
|
|
|
|
|
|
| 1823 |
|
| 1824 |
+
The following comparisons illustrate the high-fidelity conversion from static RGB images to dynamic event streams using I2E.
|
| 1825 |
|
| 1826 |
+
<table border="0" style="width: 100%">
|
| 1827 |
+
<tr>
|
| 1828 |
+
<td width="25%" align="center"><img src="./assets/original_1.jpg" alt="Original 1" style="width:100%"></td>
|
| 1829 |
+
<td width="25%" align="center"><img src="./assets/converted_1.gif" alt="Converted 1" style="width:100%"></td>
|
| 1830 |
+
<td width="25%" align="center"><img src="./assets/original_2.jpg" alt="Original 2" style="width:100%"></td>
|
| 1831 |
+
<td width="25%" align="center"><img src="./assets/converted_2.gif" alt="Converted 2" style="width:100%"></td>
|
| 1832 |
+
</tr>
|
| 1833 |
+
<tr>
|
| 1834 |
+
<td width="25%" align="center"><img src="./assets/original_3.jpg" alt="Original 3" style="width:100%"></td>
|
| 1835 |
+
<td width="25%" align="center"><img src="./assets/converted_3.gif" alt="Converted 3" style="width:100%"></td>
|
| 1836 |
+
<td width="25%" align="center"><img src="./assets/original_4.jpg" alt="Original 4" style="width:100%"></td>
|
| 1837 |
+
<td width="25%" align="center"><img src="./assets/converted_4.gif" alt="Converted 4" style="width:100%"></td>
|
| 1838 |
+
</tr>
|
| 1839 |
+
</table>
|
| 1840 |
+
|
| 1841 |
+
*More visualization comparisons can be found in [Visualization.md](./Visualization.md).*
|
| 1842 |
+
|
| 1843 |
+
## π¦ Dataset Catalog
|
| 1844 |
+
|
| 1845 |
+
We provide a comprehensive collection of standard benchmarks converted into event streams via the I2E algorithm.
|
| 1846 |
+
|
| 1847 |
+
### 1. Standard Benchmarks (Classification)
|
| 1848 |
+
| Config Name | Original Source | Resolution $(H, W)$ | I2E Ratio | Event Rate | Samples (Train/Val) |
|
| 1849 |
+
| :--- | :--- | :--- | :--- | :--- | :--- |
|
| 1850 |
+
| **`I2E-CIFAR10`** | CIFAR-10 | 128 x 128 | 0.07 | 5.86% | 50k / 10k |
|
| 1851 |
+
| **`I2E-CIFAR100`** | CIFAR-100 | 128 x 128 | 0.07 | 5.76% | 50k / 10k |
|
| 1852 |
+
| **`I2E-ImageNet`** | ILSVRC2012 | 224 x 224 | 0.12 | 6.66% | 1.28M / 50k |
|
| 1853 |
|
| 1854 |
+
### 2. Transfer Learning & Fine-grained
|
| 1855 |
+
| Config Name | Original Source | Resolution $(H, W)$ | I2E Ratio | Event Rate | Samples |
|
| 1856 |
+
| :--- | :--- | :--- | :--- | :--- | :--- |
|
| 1857 |
+
| **`I2E-Caltech101`** | Caltech-101 | 224 x 224 | 0.12 | 6.25% | 8.677k |
|
| 1858 |
+
| **`I2E-Caltech256`** | Caltech-256 | 224 x 224 | 0.12 | 6.04% | 30.607k |
|
| 1859 |
+
| **`I2E-Mini-ImageNet`**| Mini-ImageNet | 224 x 224 | 0.12 | 6.65% | 60k |
|
| 1860 |
|
| 1861 |
+
### 3. Small Scale / Toy
|
| 1862 |
+
| Config Name | Original Source | Resolution $(H, W)$ | I2E Ratio | Event Rate | Samples |
|
| 1863 |
+
| :--- | :--- | :--- | :--- | :--- | :--- |
|
| 1864 |
+
| **`I2E-MNIST`** | MNIST | 32 x 32 | 0.10 | 9.56% | 60k / 10k |
|
| 1865 |
+
| **`I2E-FashionMNIST`** | Fashion-MNIST | 32 x 32 | 0.15 | 10.76% | 60k / 10k |
|
| 1866 |
+
|
| 1867 |
+
> π **Coming Soon:** Object Detection and Semantic Segmentation datasets.
|
| 1868 |
+
|
| 1869 |
+
## π οΈ Preprocessing Protocol
|
| 1870 |
+
|
| 1871 |
+
To ensure reproducibility, we specify the exact data augmentation pipeline applied to the static images **before** I2E conversion.
|
| 1872 |
+
|
| 1873 |
+
The `(H, W)` in the code below corresponds to the "Resolution" column in the Dataset Catalog above.
|
| 1874 |
|
| 1875 |
```python
|
| 1876 |
+
from torchvision.transforms import v2
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1877 |
|
| 1878 |
+
# Standard Pre-processing Pipeline used for I2E generation
|
| 1879 |
+
transform_train = v2.Compose([
|
| 1880 |
+
# Ensure 3-channel RGB (crucial for grayscale datasets like MNIST)
|
| 1881 |
+
v2.Lambda(lambda x: x.convert('RGB')),
|
| 1882 |
+
v2.PILToTensor(),
|
| 1883 |
+
v2.Resize((H, W), interpolation=v2.InterpolationMode.BICUBIC),
|
| 1884 |
+
v2.ToDtype(torch.float32, scale=True),
|
| 1885 |
+
])
|
| 1886 |
+
````
|
| 1887 |
|
| 1888 |
+
## π» Usage
|
|
|
|
|
|
|
| 1889 |
|
| 1890 |
+
### π Quick Start
|
|
|
|
|
|
|
|
|
|
| 1891 |
|
| 1892 |
+
You **do not** need to download any extra scripts. Just copy the code below. It handles the binary unpacking (converting Parquet bytes to PyTorch Tensors) automatically.
|
| 1893 |
|
| 1894 |
+
```python
|
| 1895 |
+
import io
|
| 1896 |
+
import torch
|
| 1897 |
+
import numpy as np
|
| 1898 |
+
from datasets import load_dataset
|
| 1899 |
+
from torch.utils.data import Dataset, DataLoader
|
| 1900 |
|
| 1901 |
+
# ==================================================================
|
| 1902 |
+
# 1. Core Decoding Function (Handles the binary packing)
|
| 1903 |
+
# ==================================================================
|
| 1904 |
+
def unpack_event_data(item, use_io=True):
|
| 1905 |
+
"""
|
| 1906 |
+
Decodes the custom binary format:
|
| 1907 |
+
Header (8 bytes) -> Shape (T, C, H, W) -> Body (Packed Bits)
|
| 1908 |
+
"""
|
| 1909 |
+
if use_io:
|
| 1910 |
+
with io.BytesIO(item['data']) as f:
|
| 1911 |
+
raw_data = np.load(f)
|
| 1912 |
+
else:
|
| 1913 |
+
raw_data = np.load(item)
|
| 1914 |
+
|
| 1915 |
+
header_size = 4 * 2 # Parse Header (First 8 bytes for 4 uint16 shape values)
|
| 1916 |
+
shape_header = raw_data[:header_size].view(np.uint16)
|
| 1917 |
+
original_shape = tuple(shape_header) # Returns (T, C, H, W)
|
| 1918 |
+
|
| 1919 |
+
packed_body = raw_data[header_size:] # Parse Body & Bit-unpacking
|
| 1920 |
+
unpacked = np.unpackbits(packed_body)
|
| 1921 |
+
|
| 1922 |
+
num_elements = np.prod(original_shape) # Extract valid bits (Handle padding)
|
| 1923 |
+
event_flat = unpacked[:num_elements]
|
| 1924 |
+
event_data = event_flat.reshape(original_shape).astype(np.float32).copy()
|
| 1925 |
+
|
| 1926 |
+
return torch.from_numpy(event_data)
|
| 1927 |
|
| 1928 |
+
# ==================================================================
|
| 1929 |
+
# 2. Dataset Wrapper
|
| 1930 |
+
# ==================================================================
|
| 1931 |
+
class I2E_Dataset(Dataset):
|
| 1932 |
+
def __init__(self, cache_dir, config_name, split='train', transform=None, target_transform=None):
|
| 1933 |
+
print(f"π Loading {config_name} [{split}] from Hugging Face...")
|
| 1934 |
+
self.ds = load_dataset('UESTC-BICS/I2E', config_name, split=split, cache_dir=cache_dir, keep_in_memory=False)
|
| 1935 |
+
self.transform = transform
|
| 1936 |
+
self.target_transform = target_transform
|
| 1937 |
|
| 1938 |
+
def __len__(self):
|
| 1939 |
+
return len(self.ds)
|
| 1940 |
|
| 1941 |
+
def __getitem__(self, idx):
|
| 1942 |
+
item = self.ds[idx]
|
| 1943 |
+
event = unpack_event_data(item)
|
| 1944 |
+
label = item['label']
|
| 1945 |
+
if self.transform:
|
| 1946 |
+
event = self.transform(event)
|
| 1947 |
+
if self.target_transform:
|
| 1948 |
+
label = self.target_transform(label)
|
| 1949 |
+
return event, label
|
| 1950 |
|
| 1951 |
+
# ==================================================================
|
| 1952 |
+
# 3. Run Example
|
| 1953 |
+
# ==================================================================
|
| 1954 |
+
if __name__ == "__main__":
|
| 1955 |
+
import os
|
| 1956 |
+
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com' # Use HF mirror server in some regions
|
| 1957 |
|
| 1958 |
+
DATASET_NAME = 'I2E-CIFAR10' # Choose your config: 'I2E-CIFAR10', 'I2E-ImageNet', etc.
|
| 1959 |
+
MODEL_PATH = 'Your cache path here' # e.g., './hf_datasets_cache/'
|
| 1960 |
+
|
| 1961 |
+
train_dataset = I2E_Dataset(MODEL_PATH, DATASET_NAME, split='train')
|
| 1962 |
+
val_dataset = I2E_Dataset(MODEL_PATH, DATASET_NAME, split='validation')
|
| 1963 |
|
| 1964 |
+
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=32, persistent_workers=True)
|
| 1965 |
+
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False, num_workers=32, persistent_workers=True)
|
| 1966 |
|
| 1967 |
+
events, labels = next(iter(train_loader))
|
| 1968 |
+
print(f"β
Loaded Batch Shape: {events.shape}") # Expect: [32, T, 2, H, W]
|
| 1969 |
+
print(f"β
Labels: {labels}")
|
| 1970 |
+
```
|
| 1971 |
+
|
| 1972 |
+
## π Results (SOTA)
|
| 1973 |
+
|
| 1974 |
+
Our I2E-pretraining sets new benchmarks for Sim-to-Real transfer on **CIFAR10-DVS**.
|
| 1975 |
|
| 1976 |
<table border="1">
|
| 1977 |
<tr>
|
| 1978 |
+
<th>Dataset</th>
|
| 1979 |
<th align="center">Architecture</th>
|
| 1980 |
<th align="center">Method</th>
|
| 1981 |
<th align="center">Top-1 Acc</th>
|
|
|
|
| 1997 |
<td align="center" style="vertical-align: middle;">Transfer-II (Sim-to-Real)</td>
|
| 1998 |
<td align="center" style="vertical-align: middle;"><strong>92.5%</strong></td>
|
| 1999 |
</tr>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2000 |
</table>
|
| 2001 |
|
| 2002 |
+
*For full results and model weights, please visit our [GitHub Repo](https://github.com/Ruichen0424/I2E).*
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2003 |
|
| 2004 |
+
[](https://github.com/Ruichen0424/I2E)
|
| 2005 |
+
[](https://huggingface.co/Ruichen0424/I2E)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2006 |
|
| 2007 |
## π Citation
|
| 2008 |
|