{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import os\n", "import torch\n", "from tqdm import tqdm\n", "from load_i2e_datasets import I2E_Dataset\n", "os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com' # Use HF mirror server in some regions" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "model_cache_path = 'Your path to model cache'\n", "load_datasets = 'I2E-CIFAR10'" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "train_dataset = I2E_Dataset(model_cache_path, load_datasets, split='train', transform=None, target_transform=None)\n", "val_dataset = I2E_Dataset(model_cache_path, load_datasets, split='validation', transform=None, target_transform=None)\n", "print(f\"Train samples: {len(train_dataset)}, Validation samples: {len(val_dataset)}\")\n", "\n", "# You can create dataloaders according to your needs\n", "train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=256, shuffle=False, num_workers=32, pin_memory=False)\n", "val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=256, shuffle=False, num_workers=32, pin_memory=False)" ] } ], "metadata": { "kernelspec": { "display_name": "pytorch291n", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.14" } }, "nbformat": 4, "nbformat_minor": 2 }