--- dataset_info: - config_name: I2E-CIFAR10 features: - name: file_path dtype: string - name: label dtype: class_label: names: '0': '0' '1': '1' '2': '2' '3': '3' '4': '4' '5': '5' '6': '6' '7': '7' '8': '8' '9': '9' - name: data dtype: binary splits: - name: train num_bytes: 1646538890 num_examples: 50000 - name: validation num_bytes: 329298890 num_examples: 10000 download_size: 464478602 dataset_size: 1975837780 - config_name: I2E-CIFAR100 features: - name: file_path dtype: string - name: label dtype: class_label: names: '0': '0' '1': '1' '2': '2' '3': '3' '4': '4' '5': '5' '6': '6' '7': '7' '8': '8' '9': '9' '10': '10' '11': '11' '12': '12' '13': '13' '14': '14' '15': '15' '16': '16' '17': '17' '18': '18' '19': '19' '20': '20' '21': '21' '22': '22' '23': '23' '24': '24' '25': '25' '26': '26' '27': '27' '28': '28' '29': '29' '30': '30' '31': '31' '32': '32' '33': '33' '34': '34' '35': '35' '36': '36' '37': '37' '38': '38' '39': '39' '40': '40' '41': '41' '42': '42' '43': '43' '44': '44' '45': '45' '46': '46' '47': '47' '48': '48' '49': '49' '50': '50' '51': '51' '52': '52' '53': '53' '54': '54' '55': '55' '56': '56' '57': '57' '58': '58' '59': '59' '60': '60' '61': '61' '62': '62' '63': '63' '64': '64' '65': '65' '66': '66' '67': '67' '68': '68' '69': '69' '70': '70' '71': '71' '72': '72' '73': '73' '74': '74' '75': '75' '76': '76' '77': '77' '78': '78' '79': '79' '80': '80' '81': '81' '82': '82' '83': '83' '84': '84' '85': '85' '86': '86' '87': '87' '88': '88' '89': '89' '90': '90' '91': '91' '92': '92' '93': '93' '94': '94' '95': '95' '96': '96' '97': '97' '98': '98' '99': '99' - name: data dtype: binary splits: - name: train num_bytes: 1646583890 num_examples: 50000 - name: validation num_bytes: 329307890 num_examples: 10000 download_size: 462298257 dataset_size: 1975891780 - config_name: I2E-Caltech101 features: - name: file_path dtype: string - name: label dtype: class_label: names: '0': Faces '1': Faces_easy '2': Leopards '3': Motorbikes '4': accordion '5': airplanes '6': anchor '7': ant '8': barrel '9': bass '10': beaver '11': binocular '12': bonsai '13': brain '14': brontosaurus '15': buddha '16': butterfly '17': camera '18': cannon '19': car_side '20': ceiling_fan '21': cellphone '22': chair '23': chandelier '24': cougar_body '25': cougar_face '26': crab '27': crayfish '28': crocodile '29': crocodile_head '30': cup '31': dalmatian '32': dollar_bill '33': dolphin '34': dragonfly '35': electric_guitar '36': elephant '37': emu '38': euphonium '39': ewer '40': ferry '41': flamingo '42': flamingo_head '43': garfield '44': gerenuk '45': gramophone '46': grand_piano '47': hawksbill '48': headphone '49': hedgehog '50': helicopter '51': ibis '52': inline_skate '53': joshua_tree '54': kangaroo '55': ketch '56': lamp '57': laptop '58': llama '59': lobster '60': lotus '61': mandolin '62': mayfly '63': menorah '64': metronome '65': minaret '66': nautilus '67': octopus '68': okapi '69': pagoda '70': panda '71': pigeon '72': pizza '73': platypus '74': pyramid '75': revolver '76': rhino '77': rooster '78': saxophone '79': schooner '80': scissors '81': scorpion '82': sea_horse '83': snoopy '84': soccer_ball '85': stapler '86': starfish '87': stegosaurus '88': stop_sign '89': strawberry '90': sunflower '91': tick '92': trilobite '93': umbrella '94': watch '95': water_lilly '96': wheelchair '97': wild_cat '98': windsor_chair '99': wrench '100': yin_yang - name: data dtype: binary splits: - name: train num_bytes: 872272607 num_examples: 8677 download_size: 344357976 dataset_size: 872272607 - config_name: I2E-Caltech256 features: - name: file_path dtype: string - name: label dtype: class_label: names: '0': 001.ak47 '1': 002.american-flag '2': 003.backpack '3': 004.baseball-bat '4': 005.baseball-glove '5': 006.basketball-hoop '6': 007.bat '7': 008.bathtub '8': 009.bear '9': 010.beer-mug '10': 011.billiards '11': 012.binoculars '12': 013.birdbath '13': 014.blimp '14': 015.bonsai-101 '15': 016.boom-box '16': 017.bowling-ball '17': 018.bowling-pin '18': 019.boxing-glove '19': 020.brain-101 '20': 021.breadmaker '21': 022.buddha-101 '22': 023.bulldozer '23': 024.butterfly '24': 025.cactus '25': 026.cake '26': 027.calculator '27': 028.camel '28': 029.cannon '29': 030.canoe '30': 031.car-tire '31': 032.cartman '32': 033.cd '33': 034.centipede '34': 035.cereal-box '35': 036.chandelier-101 '36': 037.chess-board '37': 038.chimp '38': 039.chopsticks '39': 040.cockroach '40': 041.coffee-mug '41': 042.coffin '42': 043.coin '43': 044.comet '44': 045.computer-keyboard '45': 046.computer-monitor '46': 047.computer-mouse '47': 048.conch '48': 049.cormorant '49': 050.covered-wagon '50': 051.cowboy-hat '51': 052.crab-101 '52': 053.desk-globe '53': 054.diamond-ring '54': 055.dice '55': 056.dog '56': 057.dolphin-101 '57': 058.doorknob '58': 059.drinking-straw '59': 060.duck '60': 061.dumb-bell '61': 062.eiffel-tower '62': 063.electric-guitar-101 '63': 064.elephant-101 '64': 065.elk '65': 066.ewer-101 '66': 067.eyeglasses '67': 068.fern '68': 069.fighter-jet '69': 070.fire-extinguisher '70': 071.fire-hydrant '71': 072.fire-truck '72': 073.fireworks '73': 074.flashlight '74': 075.floppy-disk '75': 076.football-helmet '76': 077.french-horn '77': 078.fried-egg '78': 079.frisbee '79': 080.frog '80': 081.frying-pan '81': 082.galaxy '82': 083.gas-pump '83': 084.giraffe '84': 085.goat '85': 086.golden-gate-bridge '86': 087.goldfish '87': 088.golf-ball '88': 089.goose '89': 090.gorilla '90': 091.grand-piano-101 '91': 092.grapes '92': 093.grasshopper '93': 094.guitar-pick '94': 095.hamburger '95': 096.hammock '96': 097.harmonica '97': 098.harp '98': 099.harpsichord '99': 100.hawksbill-101 '100': 101.head-phones '101': 102.helicopter-101 '102': 103.hibiscus '103': 104.homer-simpson '104': 105.horse '105': 106.horseshoe-crab '106': 107.hot-air-balloon '107': 108.hot-dog '108': 109.hot-tub '109': 110.hourglass '110': 111.house-fly '111': 112.human-skeleton '112': 113.hummingbird '113': 114.ibis-101 '114': 115.ice-cream-cone '115': 116.iguana '116': 117.ipod '117': 118.iris '118': 119.jesus-christ '119': 120.joy-stick '120': 121.kangaroo-101 '121': 122.kayak '122': 123.ketch-101 '123': 124.killer-whale '124': 125.knife '125': 126.ladder '126': 127.laptop-101 '127': 128.lathe '128': 129.leopards-101 '129': 130.license-plate '130': 131.lightbulb '131': 132.light-house '132': 133.lightning '133': 134.llama-101 '134': 135.mailbox '135': 136.mandolin '136': 137.mars '137': 138.mattress '138': 139.megaphone '139': 140.menorah-101 '140': 141.microscope '141': 142.microwave '142': 143.minaret '143': 144.minotaur '144': 145.motorbikes-101 '145': 146.mountain-bike '146': 147.mushroom '147': 148.mussels '148': 149.necktie '149': 150.octopus '150': 151.ostrich '151': 152.owl '152': 153.palm-pilot '153': 154.palm-tree '154': 155.paperclip '155': 156.paper-shredder '156': 157.pci-card '157': 158.penguin '158': 159.people '159': 160.pez-dispenser '160': 161.photocopier '161': 162.picnic-table '162': 163.playing-card '163': 164.porcupine '164': 165.pram '165': 166.praying-mantis '166': 167.pyramid '167': 168.raccoon '168': 169.radio-telescope '169': 170.rainbow '170': 171.refrigerator '171': 172.revolver-101 '172': 173.rifle '173': 174.rotary-phone '174': 175.roulette-wheel '175': 176.saddle '176': 177.saturn '177': 178.school-bus '178': 179.scorpion-101 '179': 180.screwdriver '180': 181.segway '181': 182.self-propelled-lawn-mower '182': 183.sextant '183': 184.sheet-music '184': 185.skateboard '185': 186.skunk '186': 187.skyscraper '187': 188.smokestack '188': 189.snail '189': 190.snake '190': 191.sneaker '191': 192.snowmobile '192': 193.soccer-ball '193': 194.socks '194': 195.soda-can '195': 196.spaghetti '196': 197.speed-boat '197': 198.spider '198': 199.spoon '199': 200.stained-glass '200': 201.starfish-101 '201': 202.steering-wheel '202': 203.stirrups '203': 204.sunflower-101 '204': 205.superman '205': 206.sushi '206': 207.swan '207': 208.swiss-army-knife '208': 209.sword '209': 210.syringe '210': 211.tambourine '211': 212.teapot '212': 213.teddy-bear '213': 214.teepee '214': 215.telephone-box '215': 216.tennis-ball '216': 217.tennis-court '217': 218.tennis-racket '218': 219.theodolite '219': 220.toaster '220': 221.tomato '221': 222.tombstone '222': 223.top-hat '223': 224.touring-bike '224': 225.tower-pisa '225': 226.traffic-light '226': 227.treadmill '227': 228.triceratops '228': 229.tricycle '229': 230.trilobite-101 '230': 231.tripod '231': 232.t-shirt '232': 233.tuning-fork '233': 234.tweezer '234': 235.umbrella-101 '235': 236.unicorn '236': 237.vcr '237': 238.video-projector '238': 239.washing-machine '239': 240.watch-101 '240': 241.waterfall '241': 242.watermelon '242': 243.welding-mask '243': 244.wheelbarrow '244': 245.windmill '245': 246.wine-bottle '246': 247.xylophone '247': 248.yarmulke '248': 249.yo-yo '249': 250.zebra '250': 251.airplanes-101 '251': 252.car-side-101 '252': 253.faces-easy-101 '253': 254.greyhound '254': 255.tennis-shoes '255': 256.toad '256': 257.clutter - name: data dtype: binary splits: - name: train num_bytes: 3076928106 num_examples: 30607 download_size: 1165568633 dataset_size: 3076928106 - config_name: I2E-FashionMNIST features: - name: file_path dtype: string - name: label dtype: class_label: names: '0': '0' '1': '1' '2': '2' '3': '3' '4': '4' '5': '5' '6': '6' '7': '7' '8': '8' '9': '9' - name: data dtype: binary splits: - name: train num_bytes: 132648890 num_examples: 60000 - name: validation num_bytes: 22098890 num_examples: 10000 download_size: 68196022 dataset_size: 154747780 - config_name: I2E-ImageNet features: - name: file_path dtype: string - name: label dtype: class_label: names: '0': n01440764 '1': n01443537 '2': n01484850 '3': n01491361 '4': n01494475 '5': n01496331 '6': n01498041 '7': n01514668 '8': n01514859 '9': n01518878 '10': n01530575 '11': n01531178 '12': n01532829 '13': n01534433 '14': n01537544 '15': n01558993 '16': n01560419 '17': n01580077 '18': n01582220 '19': n01592084 '20': n01601694 '21': n01608432 '22': n01614925 '23': n01616318 '24': n01622779 '25': n01629819 '26': n01630670 '27': n01631663 '28': n01632458 '29': n01632777 '30': n01641577 '31': n01644373 '32': n01644900 '33': n01664065 '34': n01665541 '35': n01667114 '36': n01667778 '37': n01669191 '38': n01675722 '39': n01677366 '40': n01682714 '41': n01685808 '42': n01687978 '43': n01688243 '44': n01689811 '45': n01692333 '46': n01693334 '47': n01694178 '48': n01695060 '49': n01697457 '50': n01698640 '51': n01704323 '52': n01728572 '53': n01728920 '54': n01729322 '55': n01729977 '56': n01734418 '57': n01735189 '58': n01737021 '59': n01739381 '60': n01740131 '61': n01742172 '62': n01744401 '63': n01748264 '64': n01749939 '65': n01751748 '66': n01753488 '67': n01755581 '68': n01756291 '69': n01768244 '70': n01770081 '71': n01770393 '72': n01773157 '73': n01773549 '74': n01773797 '75': n01774384 '76': n01774750 '77': n01775062 '78': n01776313 '79': n01784675 '80': n01795545 '81': n01796340 '82': n01797886 '83': n01798484 '84': n01806143 '85': n01806567 '86': n01807496 '87': n01817953 '88': n01818515 '89': n01819313 '90': n01820546 '91': n01824575 '92': n01828970 '93': n01829413 '94': n01833805 '95': n01843065 '96': n01843383 '97': n01847000 '98': n01855032 '99': n01855672 '100': n01860187 '101': n01871265 '102': n01872401 '103': n01873310 '104': n01877812 '105': n01882714 '106': n01883070 '107': n01910747 '108': n01914609 '109': n01917289 '110': n01924916 '111': n01930112 '112': n01943899 '113': n01944390 '114': n01945685 '115': n01950731 '116': n01955084 '117': n01968897 '118': n01978287 '119': n01978455 '120': n01980166 '121': n01981276 '122': n01983481 '123': n01984695 '124': n01985128 '125': n01986214 '126': n01990800 '127': n02002556 '128': n02002724 '129': n02006656 '130': n02007558 '131': n02009229 '132': n02009912 '133': n02011460 '134': n02012849 '135': n02013706 '136': n02017213 '137': n02018207 '138': n02018795 '139': n02025239 '140': n02027492 '141': n02028035 '142': n02033041 '143': n02037110 '144': n02051845 '145': n02056570 '146': n02058221 '147': n02066245 '148': n02071294 '149': n02074367 '150': n02077923 '151': n02085620 '152': n02085782 '153': n02085936 '154': n02086079 '155': n02086240 '156': n02086646 '157': n02086910 '158': n02087046 '159': n02087394 '160': n02088094 '161': n02088238 '162': n02088364 '163': n02088466 '164': n02088632 '165': n02089078 '166': n02089867 '167': n02089973 '168': n02090379 '169': n02090622 '170': n02090721 '171': n02091032 '172': n02091134 '173': n02091244 '174': n02091467 '175': n02091635 '176': n02091831 '177': n02092002 '178': n02092339 '179': n02093256 '180': n02093428 '181': n02093647 '182': n02093754 '183': n02093859 '184': n02093991 '185': n02094114 '186': n02094258 '187': n02094433 '188': n02095314 '189': n02095570 '190': n02095889 '191': n02096051 '192': n02096177 '193': n02096294 '194': n02096437 '195': n02096585 '196': n02097047 '197': n02097130 '198': n02097209 '199': n02097298 '200': n02097474 '201': n02097658 '202': n02098105 '203': n02098286 '204': n02098413 '205': n02099267 '206': n02099429 '207': n02099601 '208': n02099712 '209': n02099849 '210': n02100236 '211': n02100583 '212': n02100735 '213': n02100877 '214': n02101006 '215': n02101388 '216': n02101556 '217': n02102040 '218': n02102177 '219': n02102318 '220': n02102480 '221': n02102973 '222': n02104029 '223': n02104365 '224': n02105056 '225': n02105162 '226': n02105251 '227': n02105412 '228': n02105505 '229': n02105641 '230': n02105855 '231': n02106030 '232': n02106166 '233': n02106382 '234': n02106550 '235': n02106662 '236': n02107142 '237': n02107312 '238': n02107574 '239': n02107683 '240': n02107908 '241': n02108000 '242': n02108089 '243': n02108422 '244': n02108551 '245': n02108915 '246': n02109047 '247': n02109525 '248': n02109961 '249': n02110063 '250': n02110185 '251': n02110341 '252': n02110627 '253': n02110806 '254': n02110958 '255': n02111129 '256': n02111277 '257': n02111500 '258': n02111889 '259': n02112018 '260': n02112137 '261': n02112350 '262': n02112706 '263': n02113023 '264': n02113186 '265': n02113624 '266': n02113712 '267': n02113799 '268': n02113978 '269': n02114367 '270': n02114548 '271': n02114712 '272': n02114855 '273': n02115641 '274': n02115913 '275': n02116738 '276': n02117135 '277': n02119022 '278': n02119789 '279': n02120079 '280': n02120505 '281': n02123045 '282': n02123159 '283': n02123394 '284': n02123597 '285': n02124075 '286': n02125311 '287': n02127052 '288': n02128385 '289': n02128757 '290': n02128925 '291': n02129165 '292': n02129604 '293': n02130308 '294': n02132136 '295': n02133161 '296': n02134084 '297': n02134418 '298': n02137549 '299': n02138441 '300': n02165105 '301': n02165456 '302': n02167151 '303': n02168699 '304': n02169497 '305': n02172182 '306': n02174001 '307': n02177972 '308': n02190166 '309': n02206856 '310': n02219486 '311': n02226429 '312': n02229544 '313': n02231487 '314': n02233338 '315': n02236044 '316': n02256656 '317': n02259212 '318': n02264363 '319': n02268443 '320': n02268853 '321': n02276258 '322': n02277742 '323': n02279972 '324': n02280649 '325': n02281406 '326': n02281787 '327': n02317335 '328': n02319095 '329': n02321529 '330': n02325366 '331': n02326432 '332': n02328150 '333': n02342885 '334': n02346627 '335': n02356798 '336': n02361337 '337': n02363005 '338': n02364673 '339': n02389026 '340': n02391049 '341': n02395406 '342': n02396427 '343': n02397096 '344': n02398521 '345': n02403003 '346': n02408429 '347': n02410509 '348': n02412080 '349': n02415577 '350': n02417914 '351': n02422106 '352': n02422699 '353': n02423022 '354': n02437312 '355': n02437616 '356': n02441942 '357': n02442845 '358': n02443114 '359': n02443484 '360': n02444819 '361': n02445715 '362': n02447366 '363': n02454379 '364': n02457408 '365': n02480495 '366': n02480855 '367': n02481823 '368': n02483362 '369': n02483708 '370': n02484975 '371': n02486261 '372': n02486410 '373': n02487347 '374': n02488291 '375': n02488702 '376': n02489166 '377': n02490219 '378': n02492035 '379': n02492660 '380': n02493509 '381': n02493793 '382': n02494079 '383': n02497673 '384': n02500267 '385': n02504013 '386': n02504458 '387': n02509815 '388': n02510455 '389': n02514041 '390': n02526121 '391': n02536864 '392': n02606052 '393': n02607072 '394': n02640242 '395': n02641379 '396': n02643566 '397': n02655020 '398': n02666196 '399': n02667093 '400': n02669723 '401': n02672831 '402': n02676566 '403': n02687172 '404': n02690373 '405': n02692877 '406': n02699494 '407': n02701002 '408': n02704792 '409': n02708093 '410': n02727426 '411': n02730930 '412': n02747177 '413': n02749479 '414': n02769748 '415': n02776631 '416': n02777292 '417': n02782093 '418': n02783161 '419': n02786058 '420': n02787622 '421': n02788148 '422': n02790996 '423': n02791124 '424': n02791270 '425': n02793495 '426': n02794156 '427': n02795169 '428': n02797295 '429': n02799071 '430': n02802426 '431': n02804414 '432': n02804610 '433': n02807133 '434': n02808304 '435': n02808440 '436': n02814533 '437': n02814860 '438': n02815834 '439': n02817516 '440': n02823428 '441': n02823750 '442': n02825657 '443': n02834397 '444': n02835271 '445': n02837789 '446': n02840245 '447': n02841315 '448': n02843684 '449': n02859443 '450': n02860847 '451': n02865351 '452': n02869837 '453': n02870880 '454': n02871525 '455': n02877765 '456': n02879718 '457': n02883205 '458': n02892201 '459': n02892767 '460': n02894605 '461': n02895154 '462': n02906734 '463': n02909870 '464': n02910353 '465': n02916936 '466': n02917067 '467': n02927161 '468': n02930766 '469': n02939185 '470': n02948072 '471': n02950826 '472': n02951358 '473': n02951585 '474': n02963159 '475': n02965783 '476': n02966193 '477': n02966687 '478': n02971356 '479': n02974003 '480': n02977058 '481': n02978881 '482': n02979186 '483': n02980441 '484': n02981792 '485': n02988304 '486': n02992211 '487': n02992529 '488': n02999410 '489': n03000134 '490': n03000247 '491': n03000684 '492': n03014705 '493': n03016953 '494': n03017168 '495': n03018349 '496': n03026506 '497': n03028079 '498': n03032252 '499': n03041632 '500': n03042490 '501': n03045698 '502': n03047690 '503': n03062245 '504': n03063599 '505': n03063689 '506': n03065424 '507': n03075370 '508': n03085013 '509': n03089624 '510': n03095699 '511': n03100240 '512': n03109150 '513': n03110669 '514': n03124043 '515': n03124170 '516': n03125729 '517': n03126707 '518': n03127747 '519': n03127925 '520': n03131574 '521': n03133878 '522': n03134739 '523': n03141823 '524': n03146219 '525': n03160309 '526': n03179701 '527': n03180011 '528': n03187595 '529': n03188531 '530': n03196217 '531': n03197337 '532': n03201208 '533': n03207743 '534': n03207941 '535': n03208938 '536': n03216828 '537': n03218198 '538': n03220513 '539': n03223299 '540': n03240683 '541': n03249569 '542': n03250847 '543': n03255030 '544': n03259280 '545': n03271574 '546': n03272010 '547': n03272562 '548': n03290653 '549': n03291819 '550': n03297495 '551': n03314780 '552': n03325584 '553': n03337140 '554': n03344393 '555': n03345487 '556': n03347037 '557': n03355925 '558': n03372029 '559': n03376595 '560': n03379051 '561': n03384352 '562': n03388043 '563': n03388183 '564': n03388549 '565': n03393912 '566': n03394916 '567': n03400231 '568': n03404251 '569': n03417042 '570': n03424325 '571': n03425413 '572': n03443371 '573': n03444034 '574': n03445777 '575': n03445924 '576': n03447447 '577': n03447721 '578': n03450230 '579': n03452741 '580': n03457902 '581': n03459775 '582': n03461385 '583': n03467068 '584': n03476684 '585': n03476991 '586': n03478589 '587': n03481172 '588': n03482405 '589': n03483316 '590': n03485407 '591': n03485794 '592': n03492542 '593': n03494278 '594': n03495258 '595': n03496892 '596': n03498962 '597': n03527444 '598': n03529860 '599': n03530642 '600': n03532672 '601': n03534580 '602': n03535780 '603': n03538406 '604': n03544143 '605': n03584254 '606': n03584829 '607': n03590841 '608': n03594734 '609': n03594945 '610': n03595614 '611': n03598930 '612': n03599486 '613': n03602883 '614': n03617480 '615': n03623198 '616': n03627232 '617': n03630383 '618': n03633091 '619': n03637318 '620': n03642806 '621': n03649909 '622': n03657121 '623': n03658185 '624': n03661043 '625': n03662601 '626': n03666591 '627': n03670208 '628': n03673027 '629': n03676483 '630': n03680355 '631': n03690938 '632': n03691459 '633': n03692522 '634': n03697007 '635': n03706229 '636': n03709823 '637': n03710193 '638': n03710637 '639': n03710721 '640': n03717622 '641': n03720891 '642': n03721384 '643': n03724870 '644': n03729826 '645': n03733131 '646': n03733281 '647': n03733805 '648': n03742115 '649': n03743016 '650': n03759954 '651': n03761084 '652': n03763968 '653': n03764736 '654': n03769881 '655': n03770439 '656': n03770679 '657': n03773504 '658': n03775071 '659': n03775546 '660': n03776460 '661': n03777568 '662': n03777754 '663': n03781244 '664': n03782006 '665': n03785016 '666': n03786901 '667': n03787032 '668': n03788195 '669': n03788365 '670': n03791053 '671': n03792782 '672': n03792972 '673': n03793489 '674': n03794056 '675': n03796401 '676': n03803284 '677': n03804744 '678': n03814639 '679': n03814906 '680': n03825788 '681': n03832673 '682': n03837869 '683': n03838899 '684': n03840681 '685': n03841143 '686': n03843555 '687': n03854065 '688': n03857828 '689': n03866082 '690': n03868242 '691': n03868863 '692': n03871628 '693': n03873416 '694': n03874293 '695': n03874599 '696': n03876231 '697': n03877472 '698': n03877845 '699': n03884397 '700': n03887697 '701': n03888257 '702': n03888605 '703': n03891251 '704': n03891332 '705': n03895866 '706': n03899768 '707': n03902125 '708': n03903868 '709': n03908618 '710': n03908714 '711': n03916031 '712': n03920288 '713': n03924679 '714': n03929660 '715': n03929855 '716': n03930313 '717': n03930630 '718': n03933933 '719': n03935335 '720': n03937543 '721': n03938244 '722': n03942813 '723': n03944341 '724': n03947888 '725': n03950228 '726': n03954731 '727': n03956157 '728': n03958227 '729': n03961711 '730': n03967562 '731': n03970156 '732': n03976467 '733': n03976657 '734': n03977966 '735': n03980874 '736': n03982430 '737': n03983396 '738': n03991062 '739': n03992509 '740': n03995372 '741': n03998194 '742': n04004767 '743': n04005630 '744': n04008634 '745': n04009552 '746': n04019541 '747': n04023962 '748': n04026417 '749': n04033901 '750': n04033995 '751': n04037443 '752': n04039381 '753': n04040759 '754': n04041544 '755': n04044716 '756': n04049303 '757': n04065272 '758': n04067472 '759': n04069434 '760': n04070727 '761': n04074963 '762': n04081281 '763': n04086273 '764': n04090263 '765': n04099969 '766': n04111531 '767': n04116512 '768': n04118538 '769': n04118776 '770': n04120489 '771': n04125021 '772': n04127249 '773': n04131690 '774': n04133789 '775': n04136333 '776': n04141076 '777': n04141327 '778': n04141975 '779': n04146614 '780': n04147183 '781': n04149813 '782': n04152593 '783': n04153751 '784': n04154565 '785': n04162706 '786': n04179913 '787': n04192698 '788': n04200800 '789': n04201297 '790': n04204238 '791': n04204347 '792': n04208210 '793': n04209133 '794': n04209239 '795': n04228054 '796': n04229816 '797': n04235860 '798': n04238763 '799': n04239074 '800': n04243546 '801': n04251144 '802': n04252077 '803': n04252225 '804': n04254120 '805': n04254680 '806': n04254777 '807': n04258138 '808': n04259630 '809': n04263257 '810': n04264628 '811': n04265275 '812': n04266014 '813': n04270147 '814': n04273569 '815': n04275548 '816': n04277352 '817': n04285008 '818': n04286575 '819': n04296562 '820': n04310018 '821': n04311004 '822': n04311174 '823': n04317175 '824': n04325704 '825': n04326547 '826': n04328186 '827': n04330267 '828': n04332243 '829': n04335435 '830': n04336792 '831': n04344873 '832': n04346328 '833': n04347754 '834': n04350905 '835': n04355338 '836': n04355933 '837': n04356056 '838': n04357314 '839': n04366367 '840': n04367480 '841': n04370456 '842': n04371430 '843': n04371774 '844': n04372370 '845': n04376876 '846': n04380533 '847': n04389033 '848': n04392985 '849': n04398044 '850': n04399382 '851': n04404412 '852': n04409515 '853': n04417672 '854': n04418357 '855': n04423845 '856': n04428191 '857': n04429376 '858': n04435653 '859': n04442312 '860': n04443257 '861': n04447861 '862': n04456115 '863': n04458633 '864': n04461696 '865': n04462240 '866': n04465501 '867': n04467665 '868': n04476259 '869': n04479046 '870': n04482393 '871': n04483307 '872': n04485082 '873': n04486054 '874': n04487081 '875': n04487394 '876': n04493381 '877': n04501370 '878': n04505470 '879': n04507155 '880': n04509417 '881': n04515003 '882': n04517823 '883': n04522168 '884': n04523525 '885': n04525038 '886': n04525305 '887': n04532106 '888': n04532670 '889': n04536866 '890': n04540053 '891': n04542943 '892': n04548280 '893': n04548362 '894': n04550184 '895': n04552348 '896': n04553703 '897': n04554684 '898': n04557648 '899': n04560804 '900': n04562935 '901': n04579145 '902': n04579432 '903': n04584207 '904': n04589890 '905': n04590129 '906': n04591157 '907': n04591713 '908': n04592741 '909': n04596742 '910': n04597913 '911': n04599235 '912': n04604644 '913': n04606251 '914': n04612504 '915': n04613696 '916': n06359193 '917': n06596364 '918': n06785654 '919': n06794110 '920': n06874185 '921': n07248320 '922': n07565083 '923': n07579787 '924': n07583066 '925': n07584110 '926': n07590611 '927': n07613480 '928': n07614500 '929': n07615774 '930': n07684084 '931': n07693725 '932': n07695742 '933': n07697313 '934': n07697537 '935': n07711569 '936': n07714571 '937': n07714990 '938': n07715103 '939': n07716358 '940': n07716906 '941': n07717410 '942': n07717556 '943': n07718472 '944': n07718747 '945': n07720875 '946': n07730033 '947': n07734744 '948': n07742313 '949': n07745940 '950': n07747607 '951': n07749582 '952': n07753113 '953': n07753275 '954': n07753592 '955': n07754684 '956': n07760859 '957': n07768694 '958': n07802026 '959': n07831146 '960': n07836838 '961': n07860988 '962': n07871810 '963': n07873807 '964': n07875152 '965': n07880968 '966': n07892512 '967': n07920052 '968': n07930864 '969': n07932039 '970': n09193705 '971': n09229709 '972': n09246464 '973': n09256479 '974': n09288635 '975': n09332890 '976': n09399592 '977': n09421951 '978': n09428293 '979': n09468604 '980': n09472597 '981': n09835506 '982': n10148035 '983': n10565667 '984': n11879895 '985': n11939491 '986': n12057211 '987': n12144580 '988': n12267677 '989': n12620546 '990': n12768682 '991': n12985857 '992': n12998815 '993': n13037406 '994': n13040303 '995': n13044778 '996': n13052670 '997': n13054560 '998': n13133613 '999': n15075141 - name: data dtype: binary splits: - name: train num_bytes: 128798692994 num_examples: 1281167 - name: validation num_bytes: 5027050000 num_examples: 50000 download_size: 57961329620 dataset_size: 133825742994 - config_name: I2E-MNIST features: - name: file_path dtype: string - name: label dtype: class_label: names: '0': '0' '1': '1' '2': '2' '3': '3' '4': '4' '5': '5' '6': '6' '7': '7' '8': '8' '9': '9' - name: data dtype: binary splits: - name: train num_bytes: 132648890 num_examples: 60000 - name: validation num_bytes: 22098890 num_examples: 10000 download_size: 60473109 dataset_size: 154747780 - config_name: I2E-Mini-ImageNet features: - name: file_path dtype: string - name: label dtype: class_label: names: '0': n01532829 '1': n01558993 '2': n01704323 '3': n01749939 '4': n01770081 '5': n01843383 '6': n01855672 '7': n01910747 '8': n01930112 '9': n01981276 '10': n02074367 '11': n02089867 '12': n02091244 '13': n02091831 '14': n02099601 '15': n02101006 '16': n02105505 '17': n02108089 '18': n02108551 '19': n02108915 '20': n02110063 '21': n02110341 '22': n02111277 '23': n02113712 '24': n02114548 '25': n02116738 '26': n02120079 '27': n02129165 '28': n02138441 '29': n02165456 '30': n02174001 '31': n02219486 '32': n02443484 '33': n02457408 '34': n02606052 '35': n02687172 '36': n02747177 '37': n02795169 '38': n02823428 '39': n02871525 '40': n02950826 '41': n02966193 '42': n02971356 '43': n02981792 '44': n03017168 '45': n03047690 '46': n03062245 '47': n03075370 '48': n03127925 '49': n03146219 '50': n03207743 '51': n03220513 '52': n03272010 '53': n03337140 '54': n03347037 '55': n03400231 '56': n03417042 '57': n03476684 '58': n03527444 '59': n03535780 '60': n03544143 '61': n03584254 '62': n03676483 '63': n03770439 '64': n03773504 '65': n03775546 '66': n03838899 '67': n03854065 '68': n03888605 '69': n03908618 '70': n03924679 '71': n03980874 '72': n03998194 '73': n04067472 '74': n04146614 '75': n04149813 '76': n04243546 '77': n04251144 '78': n04258138 '79': n04275548 '80': n04296562 '81': n04389033 '82': n04418357 '83': n04435653 '84': n04443257 '85': n04509417 '86': n04515003 '87': n04522168 '88': n04596742 '89': n04604644 '90': n04612504 '91': n06794110 '92': n07584110 '93': n07613480 '94': n07697537 '95': n07747607 '96': n09246464 '97': n09256479 '98': n13054560 '99': n13133613 - name: data dtype: binary splits: - name: train num_bytes: 6031941884 num_examples: 60000 download_size: 2568434568 dataset_size: 6031941884 configs: - config_name: I2E-CIFAR10 data_files: - split: train path: I2E-CIFAR10/train-* - split: validation path: I2E-CIFAR10/validation-* - config_name: I2E-CIFAR100 data_files: - split: train path: I2E-CIFAR100/train-* - split: validation path: I2E-CIFAR100/validation-* - config_name: I2E-Caltech101 data_files: - split: train path: I2E-Caltech101/train-* - config_name: I2E-Caltech256 data_files: - split: train path: I2E-Caltech256/train-* - config_name: I2E-FashionMNIST data_files: - split: train path: I2E-FashionMNIST/train-* - split: validation path: I2E-FashionMNIST/validation-* - config_name: I2E-ImageNet data_files: - split: train path: I2E-ImageNet/train-* - split: validation path: I2E-ImageNet/validation-* - config_name: I2E-MNIST data_files: - split: train path: I2E-MNIST/train-* - split: validation path: I2E-MNIST/validation-* - config_name: I2E-Mini-ImageNet data_files: - split: train path: I2E-Mini-ImageNet/train-* license: mit task_categories: - image-classification - video-classification tags: - neuromorphic - snn - spiking neural networks - event - dvs - biology - pytorch - imagenet - cifar10 - cifar100 - caltech101 - caltech256 - mnist - fashionmnist - mini-imagenet pretty_name: I2E Neuromorphic Dataset language: - en ---
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
| Dataset | Architecture | Method | Top-1 Acc |
|---|---|---|---|
| CIFAR10-DVS (Real) |
MS-ResNet18 | Baseline | 65.6% |
| MS-ResNet18 | Transfer-I | 83.1% | |
| MS-ResNet18 | Transfer-II (Sim-to-Real) | 92.5% |