Datasets:
File size: 7,262 Bytes
0910878 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
---
license: mit
task_categories:
- text-classification
tags:
- mhc
- peptide
- immunology
- out-of-distribution
- modality-shift
- binding-affinity
- eluted-ligand
size_categories:
- 1M<n<10M
---
# Modality OOD Dataset
## Dataset Description
The Modality OOD dataset tests model generalization across **different data modalities** in peptide-MHC (pMHC) binding prediction. It contains two complementary datasets representing distinct experimental measurement types:
- **BA (Binding Affinity)**: In vitro binding affinity measurements with continuous values
- **EL (Eluted Ligand)**: Mass spectrometry-based eluted ligand data with binary labels
### Key Features
- **Modality Shift Testing**: Evaluates if models trained on one modality (e.g., BA) can generalize to another (e.g., EL)
- **Real-World Relevance**: Reflects the practical challenge of applying models across different experimental platforms
- **Large Scale**: Combined 3.85M samples across 130+ HLA alleles
- **Single Allele Format**: Each sample has one peptide-HLA pair (no multi-allele)
### Biological Significance
**Why Two Modalities Matter:**
1. **Binding Affinity (BA)**:
- Measures peptide-MHC binding strength in controlled conditions
- Continuous scale (0 = no binding, 1 = strong binding)
- Reflects thermodynamic stability
- Common in immunoinformatics training data
2. **Eluted Ligand (EL)**:
- Peptides naturally presented on cell surface MHC molecules
- Binary label (1 = naturally presented, 0 = not presented)
- Reflects cellular processing, TAP transport, and MHC loading
- More biologically relevant but harder to obtain
**The Modality Gap:**
Models trained on BA data often fail on EL data (and vice versa) because:
- BA measures binding only, EL captures the full antigen processing pathway
- Different experimental biases and noise profiles
- Label semantics differ (affinity vs. presentation)
This dataset enables testing cross-modality generalization.
## Dataset Structure
### Files
- **ba_s.csv**: Binding Affinity dataset (single allele)
- **el_s.csv**: Eluted Ligand dataset (single allele)
### Data Format
Both files share the same schema:
| Column | Type | Description | Required |
|--------|------|-------------|----------|
| peptide | string | Peptide amino acid sequence (8-15aa) | Yes |
| HLA | string | HLA allele (e.g., HLA-A02:01, HLA-B07:02) | Yes |
| label | float/int | BA: continuous 0-1, EL: binary 0/1 | Yes |
| HLA_sequence | string | HLA pseudo-sequence | Yes |
### Dataset Statistics
#### BA (Binding Affinity)
- **Total Samples**: 170,470
- **Label Type**: Continuous (0.0 to 1.0)
- **Mean Affinity**: 0.2547
- **Median Affinity**: 0.0847
- **Unique HLA Alleles**: 111
- **Peptide Lengths**: 8-14 amino acids (74.3% are 9-mers)
- **File Size**: 10.61 MB
#### EL (Eluted Ligand)
- **Total Samples**: 3,679,405
- **Label Type**: Binary classification
- **Positive Samples**: 197,547 (5.4%)
- **Negative Samples**: 3,481,858 (94.6%)
- **Unique HLA Alleles**: 130
- **Peptide Lengths**: 8-15 amino acids (distributed across all lengths)
- **File Size**: 213.35 MB
### Combined Statistics
- **Total Samples**: 3,849,875
- **Unique HLA Coverage**: 130+ alleles across HLA-A, B, C
- **Modalities**: 2 (BA and EL)
- **Task Type**: Peptide-MHC (PM) binding prediction
## Usage
### Load with Pandas
```python
from huggingface_hub import hf_hub_download
import pandas as pd
# Download BA dataset
ba_file = hf_hub_download(
repo_id="YYJMAY/modality-ood",
filename="ba_s.csv",
repo_type="dataset"
)
ba_df = pd.read_csv(ba_file)
# Download EL dataset
el_file = hf_hub_download(
repo_id="YYJMAY/modality-ood",
filename="el_s.csv",
repo_type="dataset"
)
el_df = pd.read_csv(el_file)
```
### Use with SPRINT Framework
```python
from sprint.core.dataset_manager import DatasetManager
manager = DatasetManager()
config = {
'hf_repo': 'YYJMAY/modality-ood',
'files': ['ba_s.csv', 'el_s.csv'],
'ba': 'ba_s.csv',
'el': 'el_s.csv'
}
files = manager.get_dataset('modality_ood', config)
ba_file = files['ba']
el_file = files['el']
```
### Example: Cross-Modality Evaluation
```python
import pandas as pd
from your_model import YourModel
# Load data
ba_df = pd.read_csv(ba_file)
el_df = pd.read_csv(el_file)
# Scenario 1: Train on BA, test on EL
model = YourModel()
model.train(ba_df)
el_predictions = model.predict(el_df)
# Scenario 2: Train on EL, test on BA
model = YourModel()
model.train(el_df)
ba_predictions = model.predict(ba_df)
# Evaluate cross-modality generalization
```
## Experimental Design
### Recommended Evaluation Scenarios
1. **BA → EL Generalization**
- Train on BA (continuous labels)
- Test on EL (binary labels)
- Measures if affinity-based models predict presentation
2. **EL → BA Generalization**
- Train on EL (binary labels)
- Test on BA (continuous labels)
- Measures if presentation-based models predict affinity
3. **Mixed Training**
- Train on both BA and EL
- Test separately on each
- Measures multi-task learning benefits
4. **Modality-Specific Training**
- Train and test on same modality
- Baseline for comparison
### Metrics Considerations
- **For BA**: Use regression metrics (MSE, MAE, Pearson correlation)
- **For EL**: Use classification metrics (AUC, F1, precision, recall)
- **Cross-modal**: May need to binarize BA predictions or convert EL to scores
## Construction Method
Both datasets were constructed to ensure:
1. **Single Allele Format**: Each sample has exactly one HLA allele
2. **Quality Control**:
- No missing values in required columns
- No duplicate peptide-HLA-label combinations
- Peptide lengths filtered to 8-15 amino acids
3. **Standardized HLA Format**: HLA-A02:01 format (with hyphen prefix)
4. **Representative Coverage**: 130+ HLA alleles across major supertypes
5. **Balanced Lengths**: Both datasets include diverse peptide lengths
## Citation
If you use this dataset, please cite:
```bibtex
@dataset{modality_ood_2024,
title={Modality OOD Dataset for Peptide-MHC Binding Prediction},
author={SPRINT Framework Contributors},
year={2024},
url={https://huggingface.co/datasets/YYJMAY/modality-ood}
}
```
## Related Datasets
- **Allelic OOD**: Tests generalization to rare HLA alleles
- **Temporal OOD**: Tests generalization to new data over time
## Notes
- **No CDR3 sequences**: These datasets are for PM (Peptide-MHC) tasks only, not PMT (Peptide-MHC-TCR)
- **Label semantics differ**: BA is continuous affinity, EL is binary presentation
- **Experimental platforms differ**: BA from in vitro assays, EL from mass spectrometry
- **Biological processes differ**: BA measures binding only, EL captures full pathway
## License
MIT License
## Contact
For questions or issues, please open an issue on the dataset repository.
---
**Keywords**: peptide-MHC binding, immunology, binding affinity, eluted ligand, modality shift, out-of-distribution, generalization, cross-modal learning
|