fingernet
Collection
FingerNet: Multimodal Perception for Robotic Touch.
•
8 items
•
Updated
image
imagewidth (px) 640
640
| fx
float32 -4.94
8.16
| fy
float32 -7.17
4.39
| fz
float32 -5.84
0.8
| tx
float32 -282.63
303
| ty
float32 -369.94
630
| tz
float32 -43.88
57.8
| object
stringclasses 6
values | env
stringclasses 1
value |
|---|---|---|---|---|---|---|---|---|
-1.29241
| -0.679789
| -0.17251
| 70.322701
| -19.3393
| -4.73221
|
shape1
|
onland
|
|
-2.02637
| 1.13203
| -0.652667
| 23.493
| -119.038002
| 17.844801
|
shape1
|
onland
|
|
-1.45664
| -1.15747
| -0.00625
| 116.384003
| 4.00077
| -3.36375
|
shape1
|
onland
|
|
0.612378
| 3.35792
| -1.08261
| -170.828003
| -114.722
| 1.56893
|
shape1
|
onland
|
|
0.317379
| 1.49662
| -0.372178
| -85.807999
| -67.223701
| -3.95428
|
shape1
|
onland
|
|
-0.874825
| 0.565354
| -0.190245
| 17.030399
| -62.614899
| 5.25522
|
shape1
|
onland
|
|
0.009458
| -0.021548
| -0.021115
| 0.202476
| 0.896507
| -0.090533
|
shape1
|
onland
|
|
-0.858721
| 1.9172
| -0.223775
| -47.252602
| -129.184006
| -13.726
|
shape1
|
onland
|
|
-4.13505
| 3.19342
| -0.430329
| 40.503101
| -306.178009
| 2.16266
|
shape1
|
onland
|
|
-1.11629
| 0.977568
| 0.022349
| 6.58712
| -89.879501
| -12.1617
|
shape1
|
onland
|
|
-0.838859
| -0.709111
| -0.029562
| 66.666801
| 3.95949
| -1.35833
|
shape1
|
onland
|
|
-3.08577
| 1.16635
| -0.526707
| 80.500397
| -169.024994
| 16.246901
|
shape1
|
onland
|
|
-0.240765
| 1.91182
| -0.390479
| -76.806801
| -105.775002
| -8.62016
|
shape1
|
onland
|
|
-0.428877
| 0.224648
| -0.09626
| 10.6952
| -27.9697
| 2.17503
|
shape1
|
onland
|
|
-4.5678
| 3.26213
| -0.795381
| 28.921
| -293.049011
| -2.70983
|
shape1
|
onland
|
|
0.31943
| 3.51763
| -1.28548
| -160.917007
| -118.764999
| 0.895479
|
shape1
|
onland
|
|
-0.97962
| 1.49991
| -0.077623
| -23.227301
| -109.379997
| -13.5249
|
shape1
|
onland
|
|
-0.64135
| 0.650417
| -0.011431
| -3.5425
| -50.164799
| -8.30711
|
shape1
|
onland
|
|
-3.52918
| 0.442457
| -0.71948
| 132.121002
| -151.337997
| 8.50797
|
shape1
|
onland
|
|
0.01579
| -0.004821
| -0.019116
| -0.442238
| 0.810711
| 0.235784
|
shape1
|
onland
|
|
1.17852
| 1.82752
| -0.670488
| -131.421997
| -36.561298
| 5.95512
|
shape1
|
onland
|
|
-1.61229
| 1.15846
| -0.286998
| 11.8201
| -108.653
| 8.08075
|
shape1
|
onland
|
|
1.93655
| 1.90276
| -0.656348
| -174.061005
| -19.367901
| 1.67237
|
shape1
|
onland
|
|
-0.521301
| 2.13726
| -0.35536
| -74.275497
| -112.174004
| -10.5247
|
shape1
|
onland
|
|
-2.20174
| -1.20794
| -0.233338
| 166.475006
| -13.5013
| -1.62891
|
shape1
|
onland
|
|
-0.975124
| 2.92506
| -0.797531
| -87.702301
| -141.169006
| -14.959
|
shape1
|
onland
|
|
-0.80775
| 1.61052
| -0.197484
| -34.709599
| -116.214996
| -12.2086
|
shape1
|
onland
|
|
0.650626
| 2.46792
| -0.6532
| -146.591003
| -106.219002
| -3.97164
|
shape1
|
onland
|
|
-0.953995
| -0.66349
| -0.103176
| 60.504299
| -6.14013
| -5.08532
|
shape1
|
onland
|
|
-0.57275
| 0.910837
| -0.074189
| -16.306499
| -65.419197
| -8.09293
|
shape1
|
onland
|
|
-2.33866
| 1.96889
| -0.421729
| 27.502899
| -193.389008
| 9.94737
|
shape1
|
onland
|
|
-3.86009
| 0.38732
| -1.09392
| 121.147003
| -155.858002
| 12.9848
|
shape1
|
onland
|
|
-0.166848
| 1.09361
| -0.135692
| -43.563202
| -60.123001
| -5.53587
|
shape1
|
onland
|
|
-0.636578
| 0.358057
| -0.1423
| 15.1983
| -43.228001
| 3.45387
|
shape1
|
onland
|
|
-1.31038
| 2.87068
| -0.666095
| -71.633202
| -152.617996
| -19.520901
|
shape1
|
onland
|
|
-3.87536
| 1.75129
| -0.892662
| 87.688797
| -225.503998
| 22.621599
|
shape1
|
onland
|
|
-3.60877
| 0.31207
| -0.625432
| 136.401001
| -146.175003
| 8.1342
|
shape1
|
onland
|
|
-0.274895
| 0.077847
| -0.037345
| 8.16281
| -12.6322
| 1.42733
|
shape1
|
onland
|
|
-0.495706
| 3.21238
| -0.575991
| -124.253998
| -190.289993
| -13.4002
|
shape1
|
onland
|
|
0.129356
| 0.924976
| -0.357942
| -43.554298
| -28.642401
| 0.240516
|
shape1
|
onland
|
|
0.279568
| 1.5843
| -0.433673
| -85.283501
| -66.618103
| -3.01799
|
shape1
|
onland
|
|
-0.571191
| -0.400414
| -0.028418
| 38.389198
| -2.38003
| -2.79194
|
shape1
|
onland
|
|
-1.42595
| 2.06687
| -0.107458
| -21.882299
| -167.556
| -16.976801
|
shape1
|
onland
|
|
-0.207452
| 0.694952
| -0.152002
| -22.248501
| -35.565102
| -3.891
|
shape1
|
onland
|
|
1.16626
| 2.30254
| -0.754109
| -162.376999
| -75.208199
| 0.204733
|
shape1
|
onland
|
|
1.22283
| 1.86636
| -0.882686
| -118.722
| -19.9669
| 12.4995
|
shape1
|
onland
|
|
-4.10985
| -1.07456
| -0.966641
| 186.490997
| -104.011002
| -4.57954
|
shape1
|
onland
|
|
1.60962
| 2.6064
| -0.945554
| -181.960007
| -52.694199
| 9.52828
|
shape1
|
onland
|
|
-0.698322
| 1.66719
| -0.182021
| -45.778301
| -93.716797
| -11.5725
|
shape1
|
onland
|
|
1.14769
| 2.90513
| -0.955751
| -178.651001
| -87.111504
| 4.46785
|
shape1
|
onland
|
|
-0.282553
| 1.19949
| -0.136198
| -41.543098
| -76.284302
| -6.98429
|
shape1
|
onland
|
|
-2.36099
| 2.51228
| 0.031177
| -12.9563
| -201.154007
| -29.352301
|
shape1
|
onland
|
|
-2.18836
| 2.77487
| -0.094148
| -32.548401
| -201.095993
| -29.9492
|
shape1
|
onland
|
|
-2.01866
| 0.196158
| -0.284508
| 78.207497
| -83.064499
| 5.26232
|
shape1
|
onland
|
|
-1.28449
| -1.26162
| -0.107055
| 105.393997
| 7.80215
| -0.07306
|
shape1
|
onland
|
|
-0.578646
| -0.543433
| -0.059283
| 39.826801
| 0.488936
| -4.73364
|
shape1
|
onland
|
|
-1.95341
| -0.252928
| -0.008122
| 114.260002
| -56.1954
| 1.84604
|
shape1
|
onland
|
|
2.45743
| 2.74649
| -0.96011
| -221.852997
| -27.9009
| 2.5622
|
shape1
|
onland
|
|
0.035223
| -0.001967
| -0.015795
| -0.721713
| 1.32547
| -0.4592
|
shape1
|
onland
|
|
-0.697229
| 2.53336
| -0.801166
| -79.254303
| -111.974998
| -10.8862
|
shape1
|
onland
|
|
1.27301
| 2.16584
| -0.779004
| -156.938995
| -57.322102
| 2.88181
|
shape1
|
onland
|
|
-2.01187
| 0.935898
| -0.561021
| 35.957199
| -113.945999
| 14.3018
|
shape1
|
onland
|
|
1.85616
| 1.86154
| -0.762623
| -174.371002
| -25.9909
| 0.951355
|
shape1
|
onland
|
|
-2.08711
| -1.46931
| -0.239981
| 136.667999
| -14.4276
| -11.4102
|
shape1
|
onland
|
|
-0.007038
| 0.389605
| -0.050516
| -18.175501
| -21.235701
| -2.34296
|
shape1
|
onland
|
|
-0.965872
| -0.120153
| -0.000027
| 55.024502
| -28.232599
| 1.12559
|
shape1
|
onland
|
|
-1.38888
| 0.710901
| -0.176994
| 36.335499
| -89.6437
| 7.24799
|
shape1
|
onland
|
|
-0.431857
| 0.265342
| -0.097373
| 11.1365
| -29.9879
| 2.35024
|
shape1
|
onland
|
|
-0.354931
| 2.62077
| -0.527268
| -103.230003
| -144.768005
| -11.0805
|
shape1
|
onland
|
|
-2.8932
| 1.35133
| -0.593445
| 71.589401
| -174.791
| 15.0236
|
shape1
|
onland
|
|
-2.00336
| 2.61141
| -0.127087
| -33.787998
| -187.531998
| -27.886101
|
shape1
|
onland
|
|
-2.78928
| 1.659
| -0.456783
| 60.639198
| -190.453003
| 15.1771
|
shape1
|
onland
|
|
0.872297
| 1.29591
| -0.542164
| -90.604897
| -19.433901
| 6.08159
|
shape1
|
onland
|
|
-1.96911
| -0.598776
| -0.37178
| 90.481003
| -46.424198
| -2.14857
|
shape1
|
onland
|
|
0.996382
| 2.08125
| -0.690719
| -134.384003
| -54.860199
| 3.99569
|
shape1
|
onland
|
|
-1.04151
| 1.53073
| -0.164634
| -26.2237
| -100.847
| -15.4537
|
shape1
|
onland
|
|
-1.94542
| 1.62072
| -0.292949
| 20.8622
| -159.046997
| 5.757
|
shape1
|
onland
|
|
-1.71302
| 1.56285
| 0.052622
| 4.54681
| -137.281006
| -17.1938
|
shape1
|
onland
|
|
-1.51591
| 2.20104
| -0.1535
| -26.601601
| -174.615005
| -18.8944
|
shape1
|
onland
|
|
-3.26498
| 1.69493
| -0.831371
| 67.7127
| -204.313004
| 20.050301
|
shape1
|
onland
|
|
-2.63444
| 0.568608
| -0.349996
| 94.401299
| -125.501999
| 8.26269
|
shape1
|
onland
|
|
-0.35097
| 0.327736
| 0.013837
| 3.05739
| -30.7286
| 2.55133
|
shape1
|
onland
|
|
-1.12029
| 2.05503
| -0.107766
| -41.7173
| -146.757996
| -16.4848
|
shape1
|
onland
|
|
-0.539287
| -0.287812
| -0.043185
| 37.671799
| -3.87419
| -0.855275
|
shape1
|
onland
|
|
-3.13294
| 2.20876
| -0.582589
| 55.296501
| -235.014008
| 17.442101
|
shape1
|
onland
|
|
-0.219809
| -0.099892
| 0.055901
| 13.3541
| -2.47432
| -0.688002
|
shape1
|
onland
|
|
-2.16609
| 0.159906
| -0.389012
| 82.703499
| -87.384499
| 5.36125
|
shape1
|
onland
|
|
-0.230333
| 1.13873
| -0.115277
| -41.243
| -73.045998
| -7.05499
|
shape1
|
onland
|
|
-0.923463
| 0.044382
| -0.12371
| 42.188301
| -36.078098
| 1.97624
|
shape1
|
onland
|
|
-0.774438
| 0.047599
| -0.170376
| 25.396999
| -30.0644
| 2.63107
|
shape1
|
onland
|
|
0.604038
| 1.07795
| -0.359078
| -79.605904
| -35.0527
| -1.06647
|
shape1
|
onland
|
|
-1.9261
| 0.526089
| -0.30225
| 53.3349
| -93.910599
| 9.32111
|
shape1
|
onland
|
|
-3.03814
| -0.158709
| -0.091087
| 164.156998
| -102.292999
| 2.33337
|
shape1
|
onland
|
|
-2.78291
| 0.133392
| -0.558481
| 101.135002
| -107.472
| 6.74758
|
shape1
|
onland
|
|
0.47369
| 0.729223
| -0.341635
| -48.613899
| -10.2032
| 3.67948
|
shape1
|
onland
|
|
-0.54164
| 1.21234
| -0.055107
| -32.477901
| -75.184097
| -9.09031
|
shape1
|
onland
|
|
-1.79066
| 2.20111
| 0.008394
| -21.3582
| -169.524994
| -23.585899
|
shape1
|
onland
|
|
-0.018603
| 2.05034
| -0.536383
| -91.561302
| -95.749901
| -6.44505
|
shape1
|
onland
|
|
-1.08506
| 2.87143
| -0.399117
| -82.828903
| -164.125
| -18.359501
|
shape1
|
onland
|
|
2.00751
| 2.70779
| -0.935421
| -204.580994
| -43.791401
| 9.77947
|
shape1
|
onland
|
This dataset contains about 40,000 samples of image and force data collected for soft robotic fingers interacting with various objects both on land and underwater.
The dataset is organized as follows:
fingernet-img-40k/
├── onland/
│ ├── data_0.parquet
│ ├── data_1.parquet
│ ├── data_2.parquet
│ └── ...
└── underwater/
├── data_0.parquet
├── data_1.parquet
├── data_2.parquet
└── ...
Each record in contains:
| Field | Type | Description |
|---|---|---|
image |
Image |
Image containing finger structure, 640x480 pixels |
Fx, Fy, Fz, Mx, My, Mz |
float32 |
6D force-torque data in N and Nmm |
object |
string |
Contacted object name |
env |
string |
Environment (onland / underwater) |
To read the dataset, you can use the following code:
from datasets import load_dataset
# Load the onland dataset
ds = load_dataset("asRobotics/magiclaw-touch-dataset", "onland")
print(ds[0])
# Load the underwater dataset
ds = load_dataset("asRobotics/magiclaw-touch-dataset", "underwater")
print(ds[0])
If you use this dataset in your research, please cite the following paper:
@article{guo2024autoencoding,
title={Autoencoding a Soft Touch to Learn Grasping from On-Land to Underwater},
author={Guo, Ning and Han, Xudong and Liu, Xiaobo and Zhong, Shuqiao and Zhou, Zhiyuan and Lin, Jian and Dai, Jiansheng and Wan, Fang and Song, Chaoyang},
journal={Advanced Intelligent Systems},
volume={6},
number={1},
pages={2300382},
year={2024},
publisher={Wiley Online Library},
doi = {10.1002/aisy.202300382}
}