cemag commited on
Commit
bf03b8e
·
verified ·
1 Parent(s): 7739fe0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -32
README.md CHANGED
@@ -3,20 +3,18 @@ license: mit
3
  task_categories:
4
  - image-classification
5
  - visual-question-answering
6
- - computer-vision
7
  - image-to-text
8
  tags:
9
  - 3d-printing
10
  - manufacturing
11
  - quality-control
12
  - vision-language
13
- - flow-rate-estimation
14
  size_categories:
15
  - 1K<n<10K
16
  pretty_name: TL-Caxton - 3D Printing Quality Assessment Dataset
17
  ---
18
 
19
- # TL-Caxton: 3D Printing Nozzle Images Dataset
20
 
21
  ### Dataset Summary
22
 
@@ -55,29 +53,6 @@ Each sample contains:
55
  | Test | 310 | 7.6% |
56
  | **Total** | **4,048** | **100%** |
57
 
58
- ### Data Characteristics
59
-
60
- - **Flow Rate Range**: 39% to 265%
61
- - Under-extrusion: < 90%
62
- - Good extrusion: 90-110%
63
- - Over-extrusion: > 110%
64
- - **Image Format**: JPEG
65
- - **Camera**: Single fixed camera (camera1)
66
- - **Printer**: CCR20PRO
67
- - **Print Types**: Various geometries including cylinders, cones, cubes, polygons, hashtag patterns, and more
68
-
69
- ## Dataset Creation
70
-
71
- ### Image Acquisition
72
-
73
- Images were captured during 3D printing processes using a fixed camera setup. The dataset includes prints of various geometric shapes with different layer heights (1.0mm and 5.0mm) and flow rate settings.
74
-
75
- ### Annotations
76
-
77
- Each image is annotated with:
78
- - Ground truth flow rate values used during printing
79
- - Nozzle tip coordinates for potential attention mechanisms or spatial reasoning tasks
80
-
81
  ### Qualitative Descriptions
82
 
83
  The dataset includes JSON template files for generating natural language descriptions:
@@ -176,15 +151,20 @@ If you use this dataset in your research, please cite:
176
  }
177
  ```
178
 
 
 
 
 
 
 
 
 
 
 
179
  ## License
180
 
181
  This dataset is released under the MIT License.
182
 
183
  ## Contact
184
 
185
- For questions or issues regarding this dataset, please open an issue on the dataset repository.
186
-
187
- ## Acknowledgments
188
-
189
- This dataset was created to advance automated quality control in additive manufacturing through computer vision and machine learning techniques.
190
-
 
3
  task_categories:
4
  - image-classification
5
  - visual-question-answering
 
6
  - image-to-text
7
  tags:
8
  - 3d-printing
9
  - manufacturing
10
  - quality-control
11
  - vision-language
 
12
  size_categories:
13
  - 1K<n<10K
14
  pretty_name: TL-Caxton - 3D Printing Quality Assessment Dataset
15
  ---
16
 
17
+ # 3D Printing Nozzle Images Dataset
18
 
19
  ### Dataset Summary
20
 
 
53
  | Test | 310 | 7.6% |
54
  | **Total** | **4,048** | **100%** |
55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  ### Qualitative Descriptions
57
 
58
  The dataset includes JSON template files for generating natural language descriptions:
 
151
  }
152
  ```
153
 
154
+ ```bibtex
155
+ @article{MargadjiPattinson2025HybridReasoning,
156
+ title = {Hybrid Reasoning for Perception, Explanation, and Autonomous Action in Manufacturing},
157
+ author = {Margadji, Christos and Pattinson, Sebastian W.},
158
+ year = {2025},
159
+ note = {arXiv:2506.08462},
160
+ url = {https://arxiv.org/abs/2506.08462}
161
+ }
162
+ ```
163
+
164
  ## License
165
 
166
  This dataset is released under the MIT License.
167
 
168
  ## Contact
169
 
170
+ For questions or issues regarding this dataset, please open an issue on the dataset repository or email at cm2161@cam.ac.uk