--- license: mit task_categories: - image-classification - visual-question-answering - image-to-text tags: - 3d-printing - manufacturing - quality-control - vision-language size_categories: - 1K110%) 3. **Vision-Language Modeling**: Generate natural language descriptions of print quality from images 4. **Visual Question Answering**: Answer questions about print parameters and quality from images ## Dataset Structure ### Data Fields Each sample contains: - **`img_path`** (string): Filename of the camera image - **`flow_rate`** (float): Flow rate percentage value (ranging from ~39% to ~265%) - **`nozzle_tip_x`** (int): X-coordinate of nozzle tip position in pixels - **`nozzle_tip_y`** (int): Y-coordinate of nozzle tip position in pixels ### Data Splits | Split | Samples | Percentage | |-------|---------|------------| | Train | 3,407 | 84.2% | | Validation | 331 | 8.2% | | Test | 310 | 7.6% | | **Total** | **4,048** | **100%** | ### Qualitative Descriptions The dataset includes JSON template files for generating natural language descriptions: - **`general_statements.json`**: General observations about the 3D printing nozzle and process - **`qual_good_extrusion.json`**: Descriptions of good extrusion quality (flow rate 90-110%) - **`qual_under_extrusion.json`**: Descriptions of under-extrusion issues (flow rate < 90%) - **`qual_over_extrusion.json`**: Descriptions of over-extrusion issues (flow rate > 110%) - **`quant_templates.json`**: Templates for stating quantitative flow rate values These templates enable synthetic generation of diverse natural language annotations for vision-language training. ## Usage ### Loading the Dataset ```python from datasets import load_dataset # Load the full dataset dataset = load_dataset("cemag/tl-caxton") # Access individual splits train_data = dataset['train'] val_data = dataset['validation'] test_data = dataset['test'] # Example: Access a sample sample = train_data[0] print(f"Flow rate: {sample['flow_rate']}%") print(f"Nozzle position: ({sample['nozzle_tip_x']}, {sample['nozzle_tip_y']})") ``` ### Using with PyTorch ```python from torch.utils.data import DataLoader from PIL import Image import os class CIPHERDataset: def __init__(self, dataset, image_dir, transform=None): self.dataset = dataset self.image_dir = image_dir self.transform = transform def __len__(self): return len(self.dataset) def __getitem__(self, idx): sample = self.dataset[idx] img_path = os.path.join(self.image_dir, sample['img_path']) image = Image.open(img_path).convert('RGB') if self.transform: image = self.transform(image) return { 'image': image, 'flow_rate': sample['flow_rate'], 'nozzle_tip': (sample['nozzle_tip_x'], sample['nozzle_tip_y']) } # Create dataset and dataloader train_dataset = CIPHERDataset(train_data, 'images/', transform=your_transform) train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True) ``` ### Vision-Language Training ```python from data_utils import synthesize_answer, format_data # Generate a natural language description for a sample sample = train_data[0] description = synthesize_answer(sample, general=True, quant=True, qual=True) print(description) # Example output: # "This is the nozzle of a 3D printer. The observed flow rate is approximately # 100%. Good extrusion occurs when a 3D printer delivers the exact amount of # filament needed, resulting in strong, accurate, and visually appealing prints." ``` ## Citation If you use this dataset in your research, please cite: ```bibtex @dataset{tl_caxton, title={tl-Caxton: 3D Printing Quality Assessment Dataset}, author={cemag}, year={2025}, publisher={Hugging Face}, howpublished={\url{https://huggingface.co/datasets/cemag/tl-caxton}} } ``` ```bibtex @article{MargadjiPattinson2025HybridReasoning, title = {Hybrid Reasoning for Perception, Explanation, and Autonomous Action in Manufacturing}, author = {Margadji, Christos and Pattinson, Sebastian W.}, year = {2025}, note = {arXiv:2506.08462}, url = {https://arxiv.org/abs/2506.08462} } ``` ## License This dataset is released under the MIT License. ## Contact For questions or issues regarding this dataset, please open an issue on the dataset repository or email at cm2161@cam.ac.uk