--- pretty_name: "SIB-CL Datasets" license: apache-2.0 tags: - photonic-crystal - quantum - contrastive-learning - scientific-machine-learning - hdf5 - pytorch - science - physics --- # SIB-CL Datasets This repository contains the **Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)** datasets for two scientific problems: * **PhC2D**: 2D photonic crystal density-of-states (DOS) and bandstructure data. * **TISE**: 3D time-independent Schrödinger equation eigenvalue and eigenvector solutions. The data and loader scripts reproduce the behavior of the original PyTorch `Dataset` classes from the SIB-CL paper: > Loh, C., Christensen, T., Dangovski, R., Kim, S., & Soljačić, M. (2022). "Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science." *Nature Communications*, 13, 4223. [https://www.nature.com/articles/s41467-022-31915-y](https://www.nature.com/articles/s41467-022-31915-y) ## Repository Structure * `phc2d.h5`: HDF5 with groups: * `unitcell/mpbepsimage/`: 32×32 permittivity images * `unitcell/epsavg/`: scalar average permittivity * `mpbcal/DOS/`, `mpbcal/DOSeldiff/`: DOS arrays * `mpbcal/efreq/`, `mpbcal/emptylattice/`, `mpbcal/eldiff/` for bandstructure * `tise.h5`: HDF5 with groups: * `unitcell/potential_fil` (or `_res`): potential arrays * `eigval_fil/`: eigenvalues * `eigvec_fil/`: eigenvectors ## Processing & Training For processing pipelines and model training code, see the SIB-CL GitHub repository: [https://github.com/clott3/SIB-CL](https://github.com/clott3/SIB-CL) --- **Citation**: Loh, C., Christensen, T., Dangovski, R., Kim, S., & Soljačić, M. (2022). "Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science." *Nature Communications*, 13, 4223. [https://www.nature.com/articles/s41467-022-31915-y](https://www.nature.com/articles/s41467-022-31915-y)