Commit
·
a849f84
1
Parent(s):
57a3900
doc changes
Browse files- AmericanStories.py +106 -122
AmericanStories.py
CHANGED
|
@@ -1,193 +1,177 @@
|
|
| 1 |
import json
|
| 2 |
import tarfile
|
| 3 |
-
from datasets import DatasetInfo, DatasetBuilder, DownloadManager,BuilderConfig, SplitGenerator, Split, Version
|
| 4 |
import datasets
|
| 5 |
import os
|
| 6 |
import requests
|
| 7 |
import re
|
| 8 |
from tqdm import tqdm
|
| 9 |
|
|
|
|
|
|
|
|
|
|
| 10 |
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
data_files=
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
# data_files=[file for file in data_files if file.split('_')[1].startswith('17')]
|
| 23 |
-
###Arrange into splits by year - files follow the format faro_YYYY.tar.gz
|
| 24 |
-
splits={}
|
| 25 |
-
years=[]
|
| 26 |
-
for file in data_files:
|
| 27 |
-
year=file.split('_')[1].split('.')[0]
|
| 28 |
-
if year not in splits:
|
| 29 |
-
splits[year]=[]
|
| 30 |
-
splits[year].append(file)
|
| 31 |
-
years.append(year)
|
| 32 |
-
return splits, years
|
| 33 |
-
|
| 34 |
-
def make_year_file_splits(data_dir):
|
| 35 |
-
base_url="https://huggingface.co/datasets/dell-research-harvard/AmericanStories/resolve/main/"
|
| 36 |
-
|
| 37 |
-
# year_list=["1774","1804","1807"]
|
| 38 |
-
###MAke a list of years from 1774 to 1960
|
| 39 |
-
print("Collecting all list of available files for each year")
|
| 40 |
-
year_list=[str(year) for year in range(1774,1960)]
|
| 41 |
-
data_files=[f"faro_{year}.tar.gz" for year in year_list]
|
| 42 |
-
url_list=[base_url+file for file in data_files]
|
| 43 |
-
###Keep only valid urls
|
| 44 |
-
# url_list=[url for url in tqdm(url_list) if requests.get(url).status_code==200]
|
| 45 |
-
splits={year:file for year,file in zip(year_list,url_list)}
|
| 46 |
-
years=year_list
|
| 47 |
|
| 48 |
return splits, years
|
| 49 |
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
_CITATION = """\
|
| 54 |
Coming Soon
|
| 55 |
"""
|
| 56 |
|
| 57 |
_DESCRIPTION = """\
|
| 58 |
-
American Stories offers high-quality structured data from historical newspapers suitable for pre-training large language models to enhance the understanding of historical English and world knowledge. It can also be integrated into external databases of retrieval-augmented language models, enabling broader access to historical information, including interpretations of political events and intricate details about people's ancestors. Additionally, the structured article texts facilitate the application of transformer-based methods for popular tasks like detecting reproduced content, significantly improving accuracy compared to traditional OCR methods. American Stories serves as a substantial and valuable dataset for advancing multimodal layout analysis models and other multimodal applications.
|
|
|
|
| 59 |
|
| 60 |
-
_FILE_DICT,_YEARS=make_year_file_splits(
|
| 61 |
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
"""BuilderConfig for MyDataset for different configurations."""
|
| 66 |
|
| 67 |
def __init__(self, year_list=None, **kwargs):
|
| 68 |
-
"""
|
|
|
|
|
|
|
| 69 |
Args:
|
| 70 |
-
|
|
|
|
| 71 |
"""
|
| 72 |
-
super(
|
| 73 |
self.year_list = year_list
|
| 74 |
|
| 75 |
-
class AmericanStories(datasets.GeneratorBasedBuilder):
|
| 76 |
-
"""TODO: Short description of my dataset."""
|
| 77 |
-
|
| 78 |
-
VERSION = datasets.Version("0.0.1")
|
| 79 |
|
|
|
|
|
|
|
| 80 |
|
|
|
|
| 81 |
|
| 82 |
-
# This is an example of a dataset with multiple configurations.
|
| 83 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
| 84 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
| 85 |
-
|
| 86 |
-
# If you need to make complex sub-parts in the datasets with configurable options
|
| 87 |
-
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
| 88 |
-
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
| 89 |
-
|
| 90 |
-
# You will be able to load one or the other configurations in the following list with
|
| 91 |
-
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
| 92 |
-
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
| 93 |
-
##Now use the custom builder config class
|
| 94 |
BUILDER_CONFIGS = [
|
| 95 |
-
|
| 96 |
name="all_years",
|
| 97 |
version=VERSION,
|
| 98 |
description="All years in the dataset",
|
| 99 |
),
|
| 100 |
-
|
| 101 |
name="subset_years",
|
| 102 |
version=VERSION,
|
| 103 |
description="Subset of years in the dataset",
|
| 104 |
-
year_list=["1774","1804"],
|
| 105 |
-
)
|
| 106 |
-
|
| 107 |
-
DEFAULT_CONFIG_NAME = "subset_years"
|
| 108 |
|
| 109 |
def _info(self):
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
features = datasets.Features(
|
| 112 |
-
{
|
|
|
|
|
|
|
| 113 |
"edition": datasets.Value("string"),
|
| 114 |
"date": datasets.Value("string"),
|
| 115 |
"page": datasets.Value("string"),
|
| 116 |
"headline": datasets.Value("string"),
|
| 117 |
"byline": datasets.Value("string"),
|
| 118 |
-
"article": datasets.Value("string")
|
| 119 |
-
# These are the features of your dataset like images, labels ...
|
| 120 |
}
|
| 121 |
)
|
| 122 |
|
| 123 |
return datasets.DatasetInfo(
|
| 124 |
-
# This is the description that will appear on the datasets page.
|
| 125 |
description=_DESCRIPTION,
|
| 126 |
-
|
| 127 |
-
features=features, # Here we define them above because they are different between the two configurations
|
| 128 |
-
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
| 129 |
-
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
| 130 |
-
# supervised_keys=("sentence", "label"),
|
| 131 |
-
# Homepage of the dataset for documentation
|
| 132 |
-
# License for the dataset if available
|
| 133 |
-
# Citation for the dataset
|
| 134 |
citation=_CITATION,
|
| 135 |
)
|
| 136 |
|
| 137 |
def _split_generators(self, dl_manager):
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
| 142 |
-
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
| 143 |
-
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
| 144 |
urls = _FILE_DICT
|
| 145 |
-
year_list=_YEARS
|
| 146 |
|
| 147 |
-
|
| 148 |
if self.config.year_list:
|
| 149 |
-
urls={year:urls[year] for year in self.config.year_list}
|
| 150 |
-
year_list=self.config.year_list
|
| 151 |
|
| 152 |
data_dir = dl_manager.download_and_extract(urls)
|
| 153 |
|
| 154 |
-
|
| 155 |
return [
|
| 156 |
datasets.SplitGenerator(
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
) for year in year_list
|
| 164 |
]
|
| 165 |
-
|
| 166 |
|
|
|
|
|
|
|
|
|
|
| 167 |
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
| 173 |
for filepath in os.listdir(year_dir):
|
| 174 |
-
with open(os.path.join(year_dir,filepath), encoding="utf-8") as f:
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
|
|
|
|
|
| 1 |
import json
|
| 2 |
import tarfile
|
| 3 |
+
from datasets import DatasetInfo, DatasetBuilder, DownloadManager, BuilderConfig, SplitGenerator, Split, Version
|
| 4 |
import datasets
|
| 5 |
import os
|
| 6 |
import requests
|
| 7 |
import re
|
| 8 |
from tqdm import tqdm
|
| 9 |
|
| 10 |
+
SUPPORTED_YEARS = ["1774"]
|
| 11 |
+
# Add years from 1798 to 1964 to the supported years
|
| 12 |
+
SUPPORTED_YEARS = SUPPORTED_YEARS + [str(year) for year in range(1798, 1964)]
|
| 13 |
|
| 14 |
+
def make_year_file_splits():
|
| 15 |
+
"""
|
| 16 |
+
Collects a list of available files for each year.
|
| 17 |
|
| 18 |
+
Returns:
|
| 19 |
+
dict: A dictionary mapping each year to its corresponding file URL.
|
| 20 |
+
list: A list of years.
|
| 21 |
+
"""
|
| 22 |
+
base_url = "https://huggingface.co/datasets/dell-research-harvard/AmericanStories/resolve/main/"
|
| 23 |
|
| 24 |
+
# Make a list of years from 1774 to 1960
|
| 25 |
+
year_list = [str(year) for year in range(1774, 1960)]
|
| 26 |
+
data_files = [f"faro_{year}.tar.gz" for year in year_list]
|
| 27 |
+
url_list = [base_url + file for file in data_files]
|
| 28 |
+
|
| 29 |
+
splits = {year: file for year, file in zip(year_list, url_list)}
|
| 30 |
+
years = year_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
return splits, years
|
| 33 |
|
| 34 |
|
|
|
|
|
|
|
| 35 |
_CITATION = """\
|
| 36 |
Coming Soon
|
| 37 |
"""
|
| 38 |
|
| 39 |
_DESCRIPTION = """\
|
| 40 |
+
American Stories offers high-quality structured data from historical newspapers suitable for pre-training large language models to enhance the understanding of historical English and world knowledge. It can also be integrated into external databases of retrieval-augmented language models, enabling broader access to historical information, including interpretations of political events and intricate details about people's ancestors. Additionally, the structured article texts facilitate the application of transformer-based methods for popular tasks like detecting reproduced content, significantly improving accuracy compared to traditional OCR methods. American Stories serves as a substantial and valuable dataset for advancing multimodal layout analysis models and other multimodal applications.
|
| 41 |
+
"""
|
| 42 |
|
| 43 |
+
_FILE_DICT, _YEARS = make_year_file_splits()
|
| 44 |
|
| 45 |
|
| 46 |
+
class CustomBuilderConfig(datasets.BuilderConfig):
|
| 47 |
+
"""BuilderConfig for AmericanStories dataset with different configurations."""
|
|
|
|
| 48 |
|
| 49 |
def __init__(self, year_list=None, **kwargs):
|
| 50 |
+
"""
|
| 51 |
+
BuilderConfig for AmericanStories dataset.
|
| 52 |
+
|
| 53 |
Args:
|
| 54 |
+
year_list (list): A list of years to include in the dataset.
|
| 55 |
+
**kwargs: Additional keyword arguments forwarded to the superclass.
|
| 56 |
"""
|
| 57 |
+
super(CustomBuilderConfig, self).__init__(**kwargs)
|
| 58 |
self.year_list = year_list
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
class AmericanStories(datasets.GeneratorBasedBuilder):
|
| 62 |
+
"""Dataset builder class for AmericanStories dataset."""
|
| 63 |
|
| 64 |
+
VERSION = datasets.Version("0.1.0")
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
BUILDER_CONFIGS = [
|
| 67 |
+
CustomBuilderConfig(
|
| 68 |
name="all_years",
|
| 69 |
version=VERSION,
|
| 70 |
description="All years in the dataset",
|
| 71 |
),
|
| 72 |
+
CustomBuilderConfig(
|
| 73 |
name="subset_years",
|
| 74 |
version=VERSION,
|
| 75 |
description="Subset of years in the dataset",
|
| 76 |
+
year_list=["1774", "1804"],
|
| 77 |
+
)
|
| 78 |
+
]
|
| 79 |
+
DEFAULT_CONFIG_NAME = "subset_years"
|
| 80 |
|
| 81 |
def _info(self):
|
| 82 |
+
"""
|
| 83 |
+
Specifies the DatasetInfo object for the AmericanStories dataset.
|
| 84 |
+
|
| 85 |
+
Returns:
|
| 86 |
+
datasets.DatasetInfo: The DatasetInfo object.
|
| 87 |
+
"""
|
| 88 |
features = datasets.Features(
|
| 89 |
+
{
|
| 90 |
+
"article_id": datasets.Value("string"),
|
| 91 |
+
"newspaper_name": datasets.Value("string"),
|
| 92 |
"edition": datasets.Value("string"),
|
| 93 |
"date": datasets.Value("string"),
|
| 94 |
"page": datasets.Value("string"),
|
| 95 |
"headline": datasets.Value("string"),
|
| 96 |
"byline": datasets.Value("string"),
|
| 97 |
+
"article": datasets.Value("string"),
|
|
|
|
| 98 |
}
|
| 99 |
)
|
| 100 |
|
| 101 |
return datasets.DatasetInfo(
|
|
|
|
| 102 |
description=_DESCRIPTION,
|
| 103 |
+
features=features,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
citation=_CITATION,
|
| 105 |
)
|
| 106 |
|
| 107 |
def _split_generators(self, dl_manager):
|
| 108 |
+
"""
|
| 109 |
+
Downloads and extracts the data, and defines the dataset splits.
|
| 110 |
+
|
| 111 |
+
Args:
|
| 112 |
+
dl_manager (datasets.DownloadManager): The DownloadManager instance.
|
| 113 |
+
|
| 114 |
+
Returns:
|
| 115 |
+
list: A list of SplitGenerator objects.
|
| 116 |
+
"""
|
| 117 |
+
if self.config.name == "subset_years":
|
| 118 |
+
print(SUPPORTED_YEARS)
|
| 119 |
+
if not self.config.year_list:
|
| 120 |
+
raise ValueError("Please provide a valid year_list")
|
| 121 |
+
elif not set(self.config.year_list).issubset(set(SUPPORTED_YEARS)):
|
| 122 |
+
raise ValueError(f"Only {SUPPORTED_YEARS} are supported. Please provide a valid year_list")
|
| 123 |
|
|
|
|
|
|
|
|
|
|
| 124 |
urls = _FILE_DICT
|
| 125 |
+
year_list = _YEARS
|
| 126 |
|
| 127 |
+
# Subset _FILE_DICT and year_list to only include years in config.year_list
|
| 128 |
if self.config.year_list:
|
| 129 |
+
urls = {year: urls[year] for year in self.config.year_list}
|
| 130 |
+
year_list = self.config.year_list
|
| 131 |
|
| 132 |
data_dir = dl_manager.download_and_extract(urls)
|
| 133 |
|
| 134 |
+
# Return a list of splits, where each split corresponds to a year
|
| 135 |
return [
|
| 136 |
datasets.SplitGenerator(
|
| 137 |
+
name=year,
|
| 138 |
+
gen_kwargs={
|
| 139 |
+
"year_dir": os.path.join(data_dir[year], "mnt", "122a7683-fa4b-45dd-9f13-b18cc4f4a187", "ca_rule_based_fa_clean", "faro_" + year),
|
| 140 |
+
"split": year,
|
| 141 |
+
},
|
| 142 |
+
) for year in year_list
|
|
|
|
| 143 |
]
|
|
|
|
| 144 |
|
| 145 |
+
def _generate_examples(self, year_dir, split):
|
| 146 |
+
"""
|
| 147 |
+
Generates examples for the specified year and split.
|
| 148 |
|
| 149 |
+
Args:
|
| 150 |
+
year_dir (str): The directory path for the year.
|
| 151 |
+
split (str): The name of the split.
|
| 152 |
|
| 153 |
+
Yields:
|
| 154 |
+
tuple: The key-value pair containing the example ID and the example data.
|
| 155 |
+
"""
|
|
|
|
| 156 |
for filepath in os.listdir(year_dir):
|
| 157 |
+
with open(os.path.join(year_dir, filepath), encoding="utf-8") as f:
|
| 158 |
+
data = json.load(f)
|
| 159 |
+
if "lccn" in data.keys():
|
| 160 |
+
scan_id = filepath.split('.')[0]
|
| 161 |
+
scan_date = filepath.split("_")[0]
|
| 162 |
+
scan_page = filepath.split("_")[1]
|
| 163 |
+
scan_edition = filepath.split("_")[-2][8:]
|
| 164 |
+
newspaper_name = data["lccn"]["title"]
|
| 165 |
+
full_articles_in_data = data["full articles"]
|
| 166 |
+
for article in full_articles_in_data:
|
| 167 |
+
article_id = str(article["full_article_id"]) + "_" + scan_id
|
| 168 |
+
yield article_id, {
|
| 169 |
+
"article_id": article_id,
|
| 170 |
+
"newspaper_name": newspaper_name,
|
| 171 |
+
"edition": scan_edition,
|
| 172 |
+
"date": scan_date,
|
| 173 |
+
"page": scan_page,
|
| 174 |
+
"headline": article["headline"],
|
| 175 |
+
"byline": article["byline"],
|
| 176 |
+
"article": article["article"],
|
| 177 |
+
}
|