Kossisoroyce's picture
Update README.md
4a29f06 verified
metadata
license: gpl
language:
  - en
tags:
  - finance
  - banking
size_categories:
  - 1K<n<10K

Africa Automated Teller Machines (ATMs) (per 100,000 adults) Dataset

Overview

This dataset contains automated teller machines (atms) (per 100,000 adults) data for African countries from the World Bank.

Data Details

  • Indicator Code: FB.ATM.TOTL.P5
  • Description: Automated Teller Machines (ATMs) (per 100,000 adults)
  • Geographic Coverage: 52 African countries
  • Time Period: 2004-2023
  • Data Points: 858 observations
  • Coverage: 24.44% of possible country-year combinations

File Formats

Main Dataset (fb_atm_totl_p5_africa.csv)

  • Rows: 54 countries
  • Columns: 65 years (1960-2024)
  • Structure: Countries as rows, years as columns
  • Missing Value Treatment: Interpolation → Forward Fill → Backward Fill
  • Use Case: Cross-sectional analysis, heatmaps, correlation analysis

Data Quality

Coverage Statistics

  • Total Observations: 858
  • Coverage Rate: 24.44%
  • Earliest Data: 2004
  • Latest Data: 2023

Countries with No Data

2 countries have no observations: Eritrea, Somalia

Usage Examples

Python

import pandas as pd

# Load main dataset
df = pd.read_csv('fb_atm_totl_p5_africa.csv', index_col=[0, 1])

R

# Load main dataset
df <- read.csv('fb_atm_totl_p5_africa.csv', row.names=c(1,2))

Source

World Bank Open Data - Automated Teller Machines (ATMs) (per 100,000 adults)

  • Original File: API_FB.ATM.TOTL.P5_DS2_en_excel_v2_21147.xls
  • Processed: 2025-08-18

License

This dataset is derived from World Bank Open Data and is available under the Creative Commons Attribution 4.0 International License.