Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,67 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: gpl
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: gpl
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
tags:
|
| 6 |
+
- finance
|
| 7 |
+
- banking
|
| 8 |
+
size_categories:
|
| 9 |
+
- 1K<n<10K
|
| 10 |
+
---
|
| 11 |
+
# Africa Automated Teller Machines (ATMs) (per 100,000 adults) Dataset
|
| 12 |
+
|
| 13 |
+
## Overview
|
| 14 |
+
This dataset contains automated teller machines (atms) (per 100,000 adults) data for African countries from the World Bank.
|
| 15 |
+
|
| 16 |
+
## Data Details
|
| 17 |
+
- **Indicator Code**: FB.ATM.TOTL.P5
|
| 18 |
+
- **Description**: Automated Teller Machines (ATMs) (per 100,000 adults)
|
| 19 |
+
- **Geographic Coverage**: 52 African countries
|
| 20 |
+
- **Time Period**: 2004-2023
|
| 21 |
+
- **Data Points**: 858 observations
|
| 22 |
+
- **Coverage**: 24.44% of possible country-year combinations
|
| 23 |
+
|
| 24 |
+
## File Formats
|
| 25 |
+
|
| 26 |
+
### Main Dataset (`fb_atm_totl_p5_africa.csv`)
|
| 27 |
+
- **Rows**: 54 countries
|
| 28 |
+
- **Columns**: 65 years (1960-2024)
|
| 29 |
+
- **Structure**: Countries as rows, years as columns
|
| 30 |
+
- **Missing Value Treatment**: Interpolation → Forward Fill → Backward Fill
|
| 31 |
+
- **Use Case**: Cross-sectional analysis, heatmaps, correlation analysis
|
| 32 |
+
|
| 33 |
+
## Data Quality
|
| 34 |
+
|
| 35 |
+
### Coverage Statistics
|
| 36 |
+
- **Total Observations**: 858
|
| 37 |
+
- **Coverage Rate**: 24.44%
|
| 38 |
+
- **Earliest Data**: 2004
|
| 39 |
+
- **Latest Data**: 2023
|
| 40 |
+
|
| 41 |
+
### Countries with No Data
|
| 42 |
+
2 countries have no observations:
|
| 43 |
+
Eritrea, Somalia
|
| 44 |
+
|
| 45 |
+
## Usage Examples
|
| 46 |
+
|
| 47 |
+
### Python
|
| 48 |
+
```python
|
| 49 |
+
import pandas as pd
|
| 50 |
+
|
| 51 |
+
# Load main dataset
|
| 52 |
+
df = pd.read_csv('fb_atm_totl_p5_africa.csv', index_col=[0, 1])
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
### R
|
| 56 |
+
```r
|
| 57 |
+
# Load main dataset
|
| 58 |
+
df <- read.csv('fb_atm_totl_p5_africa.csv', row.names=c(1,2))
|
| 59 |
+
```
|
| 60 |
+
|
| 61 |
+
## Source
|
| 62 |
+
World Bank Open Data - Automated Teller Machines (ATMs) (per 100,000 adults)
|
| 63 |
+
- **Original File**: API_FB.ATM.TOTL.P5_DS2_en_excel_v2_21147.xls
|
| 64 |
+
- **Processed**: 2025-08-18
|
| 65 |
+
|
| 66 |
+
## License
|
| 67 |
+
This dataset is derived from World Bank Open Data and is available under the Creative Commons Attribution 4.0 International License.
|