Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-4.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- tabular-classification
|
| 5 |
+
- tabular-regression
|
| 6 |
+
language:
|
| 7 |
+
- en
|
| 8 |
+
tags:
|
| 9 |
+
- mining
|
| 10 |
+
- occupational-health
|
| 11 |
+
- tuberculosis
|
| 12 |
+
- silicosis
|
| 13 |
+
- hiv
|
| 14 |
+
- epidemiology
|
| 15 |
+
- africa
|
| 16 |
+
- synthetic-data
|
| 17 |
+
pretty_name: African Mining Occupational Health Dataset
|
| 18 |
+
size_categories:
|
| 19 |
+
- 1K<n<10K
|
| 20 |
+
---
|
| 21 |
+
|
| 22 |
+
# African Mining Occupational Health Dataset
|
| 23 |
+
|
| 24 |
+
## Dataset Description
|
| 25 |
+
|
| 26 |
+
### Overview
|
| 27 |
+
|
| 28 |
+
This dataset models the silicosis-tuberculosis-HIV syndemic affecting mining populations across sub-Saharan Africa. It provides synthetic screening records capturing the complex interplay between occupite dust exposure, infectious disease burden, and occupational health outcomes in both formal and artisanal mining contexts.
|
| 29 |
+
|
| 30 |
+
The dataset encodes epidemiologically-validated prevalence rates, risk factor associations, and comorbidity patterns derived from cross-sectional health screening studies conducted in Zimbabwe and South Africa.
|
| 31 |
+
|
| 32 |
+
### Dataset Statistics
|
| 33 |
+
|
| 34 |
+
| Attribute | Value |
|
| 35 |
+
|-----------|-------|
|
| 36 |
+
| Records | 5,000 |
|
| 37 |
+
| Variables | 16 |
|
| 38 |
+
| Geographic Scope | South Africa, Zimbabwe, Ghana, Tanzania, DRC |
|
| 39 |
+
| Format | CSV, Parquet |
|
| 40 |
+
|
| 41 |
+
## Data Schema
|
| 42 |
+
|
| 43 |
+
### Variable Dictionary
|
| 44 |
+
|
| 45 |
+
| Variable | Type | Description | Value Range/Categories |
|
| 46 |
+
|----------|------|-------------|----------------------|
|
| 47 |
+
| `record_id` | string | Unique screening record identifier | OCC-XXXXXXXX |
|
| 48 |
+
| `mine_type` | categorical | Mining operation type | formal_gold, formal_platinum, formal_coal, artisanal |
|
| 49 |
+
| `country` | categorical | Country of screening | south_africa, zimbabwe, ghana, tanzania, drc |
|
| 50 |
+
| `age` | integer | Worker age in years | 18-65 |
|
| 51 |
+
| `gender` | categorical | Worker gender | male, female |
|
| 52 |
+
| `employment_years` | float | Duration of mining employment | 0.5-40 years |
|
| 53 |
+
| `silica_exposed` | boolean | History of respirable silica exposure | True/False |
|
| 54 |
+
| `job_category` | categorical | Occupational role | driller, winch_operator, blaster, loader_operator, maintenance, supervisor, digger, processor, transporter, general, other |
|
| 55 |
+
| `hiv_status` | categorical | HIV serostatus | positive, negative |
|
| 56 |
+
| `silicosis_status` | categorical | Radiological silicosis diagnosis | positive, negative |
|
| 57 |
+
| `tb_history` | categorical | Previous tuberculosis diagnosis | yes, no |
|
| 58 |
+
| `tb_current` | categorical | Current active tuberculosis | positive, negative |
|
| 59 |
+
| `silico_tb` | boolean | Combined silico-tuberculosis diagnosis | True/False |
|
| 60 |
+
| `respiratory_symptoms` | categorical | Self-reported respiratory symptoms | yes, no |
|
| 61 |
+
| `comorbidities` | categorical | Other chronic conditions present | yes, no |
|
| 62 |
+
| `screening_year` | integer | Year of health screening | 2018-2024 |
|
| 63 |
+
|
| 64 |
+
## Methodology
|
| 65 |
+
|
| 66 |
+
### Epidemiological Framework
|
| 67 |
+
|
| 68 |
+
This dataset models the well-documented syndemic interaction between:
|
| 69 |
+
|
| 70 |
+
1. **Silicosis**: Chronic fibrotic lung disease from crystalline silica inhalation
|
| 71 |
+
2. **Tuberculosis**: Both primary infection and reactivation, amplified by silica-induced immunosuppression
|
| 72 |
+
3. **HIV/AIDS**: Further immunocompromise increasing susceptibility to both silicosis progression and TB
|
| 73 |
+
|
| 74 |
+
### Primary Literature Sources
|
| 75 |
+
|
| 76 |
+
| Source ID | Citation | Parameters Extracted |
|
| 77 |
+
|-----------|----------|---------------------|
|
| 78 |
+
| ZWE_001-007 | Moyo, D., et al. (2021). Prevalence of silicosis, pulmonary tuberculosis and their co-morbidities among artisanal and small-scale gold miners in Zimbabwe. *Occupational and Environmental Medicine*. [PMC8583466](https://pmc.ncbi.nlm.nih.gov/articles/PMC8583466/) | HIV prevalence (23.5%), silicosis prevalence (11.2%), TB prevalence (4.0%), silica exposure (95%), HIV-silicosis OR (2.79) |
|
| 79 |
+
| SA_001-004 | teWaterNaude, J.M., et al. (2006). Tuberculosis and silica exposure in South African gold miners. *Occupational and Environmental Medicine*, 63(3), 187-192. [PMC2078150](https://pmc.ncbi.nlm.nih.gov/articles/PMC2078150/) | PTB prevalence (19.4-35.2%), high-risk occupations, exposure-response relationships |
|
| 80 |
+
|
| 81 |
+
### Key Epidemiological Parameters
|
| 82 |
+
|
| 83 |
+
**HIV Prevalence** (Moyo et al., 2021):
|
| 84 |
+
- ASM workers: 23.5% (90/373 tested)
|
| 85 |
+
- 95% CI: 19.4-28.1%
|
| 86 |
+
|
| 87 |
+
**Silicosis Prevalence** (Moyo et al., 2021):
|
| 88 |
+
- Overall: 11.2% (52/464)
|
| 89 |
+
- 95% CI: 8.6-14.4%
|
| 90 |
+
|
| 91 |
+
**Tuberculosis Burden**:
|
| 92 |
+
- Current TB (Zimbabwe ASM): 4.0% (95% CI: 2.5-6.4%)
|
| 93 |
+
- TB history (SA gold miners): 19.4% (95% CI: 16.0-22.8%)
|
| 94 |
+
- TB with radiological evidence (SA): 35.2% (95% CI: 31.1-39.3%)
|
| 95 |
+
|
| 96 |
+
**HIV-Silicosis Association** (Moyo et al., 2021):
|
| 97 |
+
- HIV+ workers have 2.79x increased silicosis risk
|
| 98 |
+
- 95% CI: 1.48-5.24
|
| 99 |
+
|
| 100 |
+
**Silica Exposure** (Moyo et al., 2021):
|
| 101 |
+
- 95% of ASM workers report dust exposure
|
| 102 |
+
- 27% have ≥10 years mining duration
|
| 103 |
+
|
| 104 |
+
### Conditional Dependencies Modeled
|
| 105 |
+
|
| 106 |
+
```
|
| 107 |
+
Silicosis Risk = f(silica_exposure, employment_years, hiv_status)
|
| 108 |
+
TB Risk = f(silicosis_status, hiv_status, employment_years)
|
| 109 |
+
Current TB = f(silicosis_status, hiv_status, tb_history)
|
| 110 |
+
Symptoms = f(silicosis_status, tb_current)
|
| 111 |
+
```
|
| 112 |
+
|
| 113 |
+
## Limitations
|
| 114 |
+
|
| 115 |
+
1. **Cross-sectional Design**: Source studies are cross-sectional; temporal relationships are inferred
|
| 116 |
+
2. **Selection Effects**: Mining populations in studies may not represent all workers
|
| 117 |
+
3. **Diagnostic Heterogeneity**: TB and silicosis definitions vary across source studies
|
| 118 |
+
4. **Treatment Effects**: ART coverage and TB treatment effects not fully modeled
|
| 119 |
+
5. **Exposure Quantification**: Silica exposure is binary rather than dose-response
|
| 120 |
+
|
| 121 |
+
## Ethical Considerations
|
| 122 |
+
|
| 123 |
+
- **Sensitive Health Data**: HIV status is highly sensitive; synthetic nature mitigates privacy risks
|
| 124 |
+
- **Stigmatization**: Results should not stigmatize mining communities or countries
|
| 125 |
+
- **Health Equity**: Dataset highlights occupational health disparities requiring policy attention
|
| 126 |
+
- **Clinical Limitations**: Not suitable for individual diagnostic or prognostic decisions
|
| 127 |
+
|
| 128 |
+
## Intended Uses
|
| 129 |
+
|
| 130 |
+
### Appropriate Uses
|
| 131 |
+
|
| 132 |
+
- Epidemiological modeling of occupational lung disease
|
| 133 |
+
- Machine learning for screening program optimization
|
| 134 |
+
- Health economics and cost-effectiveness research
|
| 135 |
+
- Educational demonstrations of syndemic frameworks
|
| 136 |
+
- Methods development for comorbidity analysis
|
| 137 |
+
|
| 138 |
+
### Inappropriate Uses
|
| 139 |
+
|
| 140 |
+
- Individual clinical diagnosis or prognosis
|
| 141 |
+
- Insurance underwriting or risk stratification
|
| 142 |
+
- Occupational health compliance certification
|
| 143 |
+
- Policy decisions without validation against local data
|
| 144 |
+
|
| 145 |
+
## Citation
|
| 146 |
+
|
| 147 |
+
```bibtex
|
| 148 |
+
@dataset{electric_sheep_africa_occupational_health_2024,
|
| 149 |
+
title = {African Mining Occupational Health Dataset: Silicosis-TB-HIV Syndemic},
|
| 150 |
+
author = {Electric Sheep Africa},
|
| 151 |
+
year = {2024},
|
| 152 |
+
publisher = {Hugging Face},
|
| 153 |
+
url = {https://huggingface.co/datasets/electricsheepafrica/african-mining-occupational-health},
|
| 154 |
+
note = {Synthetic dataset derived from epidemiological studies of African mining populations}
|
| 155 |
+
}
|
| 156 |
+
```
|
| 157 |
+
|
| 158 |
+
## References
|
| 159 |
+
|
| 160 |
+
1. Moyo, D., Zishiri, C., Ncube, R., Madziva, G., & Sandy, C. (2021). Prevalence of silicosis and pulmonary tuberculosis among artisanal and small-scale gold miners in Zimbabwe. *Occupational and Environmental Medicine*, 78(Suppl 1), A1-A173.
|
| 161 |
+
|
| 162 |
+
2. teWaterNaude, J.M., Ehrlich, R.I., Churchyard, G.J., Pemba, L., Dekker, K.,"; M., White, N.W., Thompson, M.L., & Myers, J.E. (2006). Tuberculosis and silica exposure in South African gold miners. *Occupational and Environmental Medicine*, 63(3), 187-192.
|
| 163 |
+
|
| 164 |
+
3. Rees, D., & Murray, J. (2007). Silica, silicosis and tuberculosis. *International Journal of Tuberculosis and Lung Disease*, 11(5), 474-484.
|
| 165 |
+
|
| 166 |
+
## License
|
| 167 |
+
|
| 168 |
+
This dataset is released under the [Creative Commons Attribution 4.0 International License](https://creativecommons.org/licenses/by/4.0/) (CC-BY-4.0).
|
| 169 |
+
|
| 170 |
+
## Contact
|
| 171 |
+
|
| 172 |
+
For questions or feedback, please open an issue on the dataset repository or contact Electric Sheep Africa.
|