--- license: apache-2.0 task_categories: - tabular-classification - tabular-regression tags: - nigeria - mobile-money - fraud-detection - churn-prediction - digital-payments - fintech - financial-inclusion language: - en size_categories: - 1M2): 12x risk - **New Wallet** (<7 days old): 5x risk - **High Velocity** (>20 txns/24h): 15x risk - **Night Hours**: 3x risk - **Round Amounts** (₦50k, ₦100k): 4x risk ### Churn (30 days) - **Positive**: 6% - **Negative**: 94% **Churn Drivers**: - **Dormant** (14+ days no activity): 8x risk - **Low Diversity** (only airtime): 3x risk - **Failed Transactions** (>3 failures): 4x risk - **Tier 1 Only** (never upgraded): 2.5x risk - **No Bill Payments**: 2x risk --- ## Data Distributions ### Transaction Types | Type | Percentage | Description | |------|------------|-------------| | Airtime | 25% | Mobile phone top-up | | P2P Send | 20% | Send money to another wallet | | P2P Receive | 20% | Receive money from another wallet | | Bill Payment | 15% | Utilities, cable TV, internet | | Cash-in | 10% | Deposit to wallet | | Cash-out | 8% | Withdraw from wallet | | Data Bundle | 2% | Internet data purchase | ### Channels | Channel | Percentage | Description | |---------|------------|-------------| | USSD | 50% | *99# codes (no smartphone needed) | | App | 35% | Smartphone apps | | Agent | 13% | Through banking agents | | Web | 2% | Web portal | ### Device OS | OS | Percentage | |----|------------| | Android | 70% | | Feature Phone | 25% | | iOS | 5% | ### KYC Tiers | Tier | Daily Limit | Percentage | |------|-------------|------------| | Tier 1 | ₦50,000 | 60% | | Tier 2 | ₦200,000 | 35% | | Tier 3 | ₦5,000,000 | 5% | --- ## Mobile Money Providers ### Market Share | Provider | Share | Features | |----------|-------|----------| | **OPay** | 35% | Cashback rewards (1%) | | **PalmPay** | 30% | Referral bonuses (₦500) | | **MTN MoMo** | 20% | Network advantage (linked to MTN) | | **Airtel Money** | 10% | Airtel network integration | | **9PSB** | 5% | 9mobile payment service | --- ## Nigerian Context ### Usage Patterns ✅ **Airtime Dominant**: Small frequent airtime purchases (₦200-₦1,500) ✅ **Family Transfers**: 65% send to 3-5 family members regularly ✅ **Agent Preference**: Urban 75% cashout via agents, Rural 45% ✅ **USSD Heavy**: 50% still use USSD (*99#) over apps ✅ **Bill Payments**: DSTV, GOtv, EKEDC, IKEDC, internet ### Financial Inclusion - **Unbanked Access**: Mobile money reaches 30M+ unbanked Nigerians - **Rural Penetration**: Feature phone support enables rural access - **Low Barriers**: Tier 1 KYC requires only phone number - **Micro-transactions**: Enables ₦50-₦500 transactions ### Transaction Patterns - **Morning Peak**: 9-12am (before work) - **Evening Peak**: 6-8pm (after work, family transfers) - **Weekend Dip**: -20% on Sundays - **Month-End Surge**: +50% last week of month (salary days) --- ## Files ``` mobile_money/ ├── README.md ├── nigerian_mobile_money_pilot.parquet (10k, 0.62 MB) ├── nigerian_mobile_money.parquet (4M, ~320 MB) - Coming Soon ├── nigerian_mobile_money.csv (4M, ~640 MB) - Coming Soon └── mobile_money_sample.csv (100 rows) ``` --- ## Usage Example ```python import pandas as pd from sklearn.ensemble import RandomForestClassifier # Load data df = pd.read_parquet('nigerian_mobile_money.parquet') # Fraud detection features df['is_cashout'] = (df['transaction_type'] == 'cashout').astype(int) df['is_night'] = ((df['timestamp'].dt.hour >= 22) | (df['timestamp'].dt.hour <= 6)).astype(int) df['is_round'] = df['amount_ngn'].isin([50000, 100000, 200000]).astype(int) df['hour'] = df['timestamp'].dt.hour fraud_features = ['amount_ngn', 'fee_ngn', 'is_cashout', 'is_night', 'is_round', 'hour'] X_fraud = df[fraud_features] y_fraud = df['fraud_flag'] # Train fraud model fraud_model = RandomForestClassifier(n_estimators=100) fraud_model.fit(X_fraud, y_fraud) # Churn prediction features df['balance_low'] = (df['balance_after_ngn'] < 1000).astype(int) df['is_tier1'] = (df['kyc_tier'] == 'tier1').astype(int) df['only_airtime'] = (df['transaction_type'] == 'airtime').astype(int) churn_features = ['balance_low', 'is_tier1', 'only_airtime', 'amount_ngn'] X_churn = df[churn_features] y_churn = df['churn_30d'] # Train churn model churn_model = RandomForestClassifier(n_estimators=100) churn_model.fit(X_churn, y_churn) ``` --- ## Citation ```bibtex @dataset{nigerian_mobile_money_2025, author = {Electric Sheep Africa}, title = {Nigerian Mobile Money Wallet Transactions Dataset}, year = {2025}, publisher = {Hugging Face} } ``` --- **Last Updated**: 2025-10-19 **Status**: ✅ Pilot Validated