Datasets:
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
task_categories:
|
| 4 |
+
- tabular-classification
|
| 5 |
+
tags:
|
| 6 |
+
- nigeria
|
| 7 |
+
- banking
|
| 8 |
+
- finance
|
| 9 |
+
- fraud-detection
|
| 10 |
+
- synthetic
|
| 11 |
+
- african-data
|
| 12 |
+
language:
|
| 13 |
+
- en
|
| 14 |
+
size_categories:
|
| 15 |
+
- 1M<n<10M
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
# Web Banking Sessions
|
| 19 |
+
|
| 20 |
+
## Dataset Description
|
| 21 |
+
|
| 22 |
+
Nigerian web banking sessions with session hijacking fraud labels
|
| 23 |
+
|
| 24 |
+
This is a **production-grade synthetic dataset** with authentic Nigerian banking context, designed for web fraud detection, phishing detection, and browser-based threat monitoring.
|
| 25 |
+
|
| 26 |
+
### Key Features
|
| 27 |
+
|
| 28 |
+
- π³π¬ **Nigerian Context**: Real bank names, states, demographics
|
| 29 |
+
- π **ML-Ready Labels**: Fraud flag (0.8% prevalence)
|
| 30 |
+
- β‘ **Large Scale**: 3,000,000 rows
|
| 31 |
+
- π― **Realistic Distributions**: Lognormal session durations, browser distributions, hourly patterns
|
| 32 |
+
- π
**Temporal Coverage**: 2023-01-01 to 2024-12-31
|
| 33 |
+
|
| 34 |
+
## Dataset Structure
|
| 35 |
+
|
| 36 |
+
### Splits
|
| 37 |
+
|
| 38 |
+
- **Train**: 2,100,000 rows (70%)
|
| 39 |
+
- **Validation**: 450,000 rows (15%)
|
| 40 |
+
- **Test**: 450,000 rows (15%)
|
| 41 |
+
|
| 42 |
+
### Schema
|
| 43 |
+
|
| 44 |
+
**Key columns**: session_id, session_start/end, customer_id, account_id, device_id, browser, browser_version, session_duration_seconds, actions_count, transactions_count, login_method, state, ip_address, session_status, fraud_flag
|
| 45 |
+
|
| 46 |
+
## Usage
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
from datasets import load_dataset
|
| 50 |
+
|
| 51 |
+
# Load full dataset
|
| 52 |
+
dataset = load_dataset("electricsheepafrica/nigerian_web_banking_sessions")
|
| 53 |
+
|
| 54 |
+
# Load specific split
|
| 55 |
+
train_data = load_dataset("electricsheepafrica/nigerian_web_banking_sessions", split="train")
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
## Labels
|
| 59 |
+
|
| 60 |
+
- **Type**: Fraud flag (0.8% prevalence)
|
| 61 |
+
- **Use Case**: web fraud detection, phishing detection, and browser-based threat monitoring
|
| 62 |
+
|
| 63 |
+
## Nigerian Context
|
| 64 |
+
|
| 65 |
+
Nigerian web banking patterns, browser distribution (Chrome 55%, Safari 20%, Firefox 15%), typical session behaviors, and fraud patterns including credential stuffing and session replay.
|
| 66 |
+
|
| 67 |
+
## Citation
|
| 68 |
+
|
| 69 |
+
```bibtex
|
| 70 |
+
@dataset{nigerian_banking_web_banking_sessions,
|
| 71 |
+
title = {Nigerian Web Banking Sessions},
|
| 72 |
+
author = {Electric Sheep Africa},
|
| 73 |
+
year = {2025},
|
| 74 |
+
publisher = {Hugging Face},
|
| 75 |
+
howpublished = {\url{https://huggingface.co/datasets/electricsheepafrica/nigerian_web_banking_sessions}}
|
| 76 |
+
}
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
## License
|
| 80 |
+
|
| 81 |
+
Apache 2.0 - Free for commercial and research use.
|
| 82 |
+
|
| 83 |
+
## Contact
|
| 84 |
+
|
| 85 |
+
- **Organization**: Electric Sheep Africa
|
| 86 |
+
- **Collection**: [Nigeria Banking & Finance Datasets](https://huggingface.co/collections/electricsheepafrica/nigeria-banking)
|