Datasets:
Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
tags:
|
| 5 |
+
- tumour-markers
|
| 6 |
+
- ctDNA
|
| 7 |
+
- treatment-response
|
| 8 |
+
- trajectories
|
| 9 |
+
- breast-cancer
|
| 10 |
+
- sub-saharan-africa
|
| 11 |
+
license: cc-by-nc-4.0
|
| 12 |
+
pretty_name: SSA Breast Biomarker Trajectories (CA15-3 / CA27-29 / ctDNA)
|
| 13 |
+
task_categories:
|
| 14 |
+
- other
|
| 15 |
+
size_categories:
|
| 16 |
+
- 1K<n<10K
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# SSA Breast Biomarker Trajectories (Synthetic)
|
| 20 |
+
|
| 21 |
+
## Dataset summary
|
| 22 |
+
|
| 23 |
+
This module provides a **synthetic biomarker trajectory dataset** for breast cancer treatment monitoring, focused on:
|
| 24 |
+
|
| 25 |
+
- **Serum tumour markers**: CA 15-3 and CA 27-29.
|
| 26 |
+
- **Circulating tumour DNA (ctDNA)** levels.
|
| 27 |
+
- **Treatment response monitoring** over 0–24 months.
|
| 28 |
+
|
| 29 |
+
It is designed to emulate:
|
| 30 |
+
|
| 31 |
+
- Higher baseline marker levels in advanced-stage disease.
|
| 32 |
+
- Early declines in CA 15-3 and ctDNA in responders.
|
| 33 |
+
- Rising or non-clearing ctDNA in early and late progression.
|
| 34 |
+
|
| 35 |
+
All records are **fully synthetic**, grounded in clinical literature on serial CA15-3/CA27-29 measurement and ctDNA dynamics in metastatic and early breast cancer.
|
| 36 |
+
|
| 37 |
+
## Cohort design
|
| 38 |
+
|
| 39 |
+
### Sample size and populations
|
| 40 |
+
|
| 41 |
+
- **Baseline patients**: 6,000.
|
| 42 |
+
- **Populations**:
|
| 43 |
+
- `SSA_West`: 1,500
|
| 44 |
+
- `SSA_East`: 1,500
|
| 45 |
+
- `SSA_Central`: 1,000
|
| 46 |
+
- `SSA_Southern`: 1,000
|
| 47 |
+
- `AAW` (African American women): 1,000
|
| 48 |
+
- `EUR`: 600
|
| 49 |
+
- `EAS`: 400
|
| 50 |
+
|
| 51 |
+
### Baseline variables
|
| 52 |
+
|
| 53 |
+
- `sex`: predominantly `Female` (~99%).
|
| 54 |
+
- `age_years`: 18–90, with slightly younger distribution in SSA vs EUR/EAS.
|
| 55 |
+
- `stage_at_diagnosis`: I–IV, with later stages more frequent in SSA.
|
| 56 |
+
- `tumor_subtype`:
|
| 57 |
+
- `Luminal_A`, `Luminal_B`, `HER2_enriched`, `Basal_like`, `Normal_like`, with higher basal-like in SSA and AAW.
|
| 58 |
+
- `therapy_class`:
|
| 59 |
+
- `Endocrine_only`
|
| 60 |
+
- `Chemo_only`
|
| 61 |
+
- `Chemo_plus_endocrine`
|
| 62 |
+
- `HER2_targeted`
|
| 63 |
+
- `CDK4_6_plus_endocrine`
|
| 64 |
+
- `response_class` (treatment course):
|
| 65 |
+
- `Deep_response`
|
| 66 |
+
- `Partial_response`
|
| 67 |
+
- `Stable_disease`
|
| 68 |
+
- `Early_progression`
|
| 69 |
+
- `Late_progression`
|
| 70 |
+
|
| 71 |
+
These response classes drive **biomarker trajectories**.
|
| 72 |
+
|
| 73 |
+
## Time structure
|
| 74 |
+
|
| 75 |
+
Patients are followed at:
|
| 76 |
+
|
| 77 |
+
- `time_months`: [0, 3, 6, 9, 12, 18, 24].
|
| 78 |
+
|
| 79 |
+
At each time point, biomarker levels are simulated conditional on:
|
| 80 |
+
|
| 81 |
+
- `stage_at_diagnosis` (baseline tumour burden).
|
| 82 |
+
- `response_class` (kinetic pattern).
|
| 83 |
+
|
| 84 |
+
## Biomarkers
|
| 85 |
+
|
| 86 |
+
### CA 15-3
|
| 87 |
+
|
| 88 |
+
- Units: `U/mL`.
|
| 89 |
+
- Baseline means increase with stage (approximate):
|
| 90 |
+
- Stage I: ~15 U/mL
|
| 91 |
+
- Stage II: ~30 U/mL
|
| 92 |
+
- Stage III: ~60 U/mL
|
| 93 |
+
- Stage IV: ~120 U/mL
|
| 94 |
+
- SD fraction ~0.6 (log-normal variability).
|
| 95 |
+
|
| 96 |
+
Response-class–specific trajectories (multipliers on baseline):
|
| 97 |
+
|
| 98 |
+
- `Deep_response`: rapid drop (e.g., ~50% at 3 months, ~75% reduction by 12 months).
|
| 99 |
+
- `Partial_response`: moderate drop (~30% at 3 months, ~50% reduction by 12 months).
|
| 100 |
+
- `Stable_disease`: flat or slightly drifting around baseline.
|
| 101 |
+
- `Early_progression`: early rise (>10% increase by 3 months, continuing upward).
|
| 102 |
+
- `Late_progression`: initial drop, followed by rise after ~12 months.
|
| 103 |
+
|
| 104 |
+
These patterns reflect published CA15-3 kinetics linking rapid declines to radiologic response and surges to progression.
|
| 105 |
+
|
| 106 |
+
### CA 27-29
|
| 107 |
+
|
| 108 |
+
- Units: `U/mL`.
|
| 109 |
+
- Modelled as a **correlated companion marker** to CA 15-3:
|
| 110 |
+
- `ca2729_u_per_ml` is sampled as CA 27-29 ≈ CA 15-3 × log-normal noise.
|
| 111 |
+
- Captures that CA 27-29 is clinically used in a similar role to CA 15-3 but with independent assay noise.
|
| 112 |
+
|
| 113 |
+
### ctDNA
|
| 114 |
+
|
| 115 |
+
- Units: `copies_per_mL`.
|
| 116 |
+
- Baseline log10 means increase with stage:
|
| 117 |
+
- Stage I: ~10^1.3
|
| 118 |
+
- Stage II: ~10^1.7
|
| 119 |
+
- Stage III: ~10^2.1
|
| 120 |
+
- Stage IV: ~10^2.5
|
| 121 |
+
- Detection limit: ~5 copies/mL.
|
| 122 |
+
|
| 123 |
+
Kinetic patterns by `response_class`:
|
| 124 |
+
|
| 125 |
+
- `Deep_response`:
|
| 126 |
+
- Rapid and deep ctDNA decline; many become undetectable by 3–6 months.
|
| 127 |
+
- `Partial_response`:
|
| 128 |
+
- Substantial decline but less complete clearance.
|
| 129 |
+
- `Stable_disease`:
|
| 130 |
+
- Small changes, often hovering near baseline.
|
| 131 |
+
- `Early_progression`:
|
| 132 |
+
- Transient modest fall, followed by strong rise (often >2–3× by 12–24 months).
|
| 133 |
+
- `Late_progression`:
|
| 134 |
+
- Early decline then late rise (mirroring late progression in CA 15-3).
|
| 135 |
+
|
| 136 |
+
Summary flags:
|
| 137 |
+
|
| 138 |
+
- `ctdna_baseline_detectable`
|
| 139 |
+
- `ctdna_cleared_by_6m` (detectable at baseline and undetectable at all timepoints ≤6 months).
|
| 140 |
+
|
| 141 |
+
## Files and schema
|
| 142 |
+
|
| 143 |
+
### Baseline table
|
| 144 |
+
|
| 145 |
+
Files:
|
| 146 |
+
|
| 147 |
+
- `biomarker_trajectories_baseline.parquet`
|
| 148 |
+
- `biomarker_trajectories_baseline.csv`
|
| 149 |
+
|
| 150 |
+
Columns (per patient):
|
| 151 |
+
|
| 152 |
+
- Identifiers & demographics:
|
| 153 |
+
- `sample_id`, `population`, `region`, `is_SSA`, `is_reference_panel`, `sex`, `age_years`.
|
| 154 |
+
- Tumour & therapy:
|
| 155 |
+
- `stage_at_diagnosis`, `tumor_subtype`, `therapy_class`, `response_class`.
|
| 156 |
+
- CA 15-3 summary:
|
| 157 |
+
- `ca153_baseline_u_per_ml`
|
| 158 |
+
- `ca153_nadir_u_per_ml`
|
| 159 |
+
- `ca153_best_delta_fraction` (nadir vs baseline, negative values indicate decline).
|
| 160 |
+
- CA 27-29 summary:
|
| 161 |
+
- `ca2729_baseline_u_per_ml`
|
| 162 |
+
- `ca2729_nadir_u_per_ml`
|
| 163 |
+
- `ca2729_best_delta_fraction`.
|
| 164 |
+
- ctDNA summary:
|
| 165 |
+
- `ctdna_baseline_copies_per_ml`
|
| 166 |
+
- `ctdna_min_copies_per_ml`
|
| 167 |
+
- `ctdna_baseline_detectable`
|
| 168 |
+
- `ctdna_cleared_by_6m`.
|
| 169 |
+
|
| 170 |
+
### Timeseries table
|
| 171 |
+
|
| 172 |
+
Files:
|
| 173 |
+
|
| 174 |
+
- `biomarker_trajectories_timeseries.parquet`
|
| 175 |
+
- `biomarker_trajectories_timeseries.csv`
|
| 176 |
+
|
| 177 |
+
Columns (per patient × timepoint):
|
| 178 |
+
|
| 179 |
+
- `sample_id`
|
| 180 |
+
- `population`
|
| 181 |
+
- `stage_at_diagnosis`
|
| 182 |
+
- `tumor_subtype`
|
| 183 |
+
- `therapy_class`
|
| 184 |
+
- `response_class`
|
| 185 |
+
- `time_months`
|
| 186 |
+
- `ca153_u_per_ml`
|
| 187 |
+
- `ca2729_u_per_ml`
|
| 188 |
+
- `ctdna_copies_per_ml`
|
| 189 |
+
- `ctdna_detectable`
|
| 190 |
+
|
| 191 |
+
## Generation
|
| 192 |
+
|
| 193 |
+
The dataset is generated using:
|
| 194 |
+
|
| 195 |
+
- `biomarker_trajectories/scripts/generate_biomarker_trajectories.py`
|
| 196 |
+
|
| 197 |
+
with configuration:
|
| 198 |
+
|
| 199 |
+
- `biomarker_trajectories/configs/biomarker_trajectories_config.yaml`
|
| 200 |
+
|
| 201 |
+
and literature inventory:
|
| 202 |
+
|
| 203 |
+
- `biomarker_trajectories/docs/LITERATURE_INVENTORY.csv`
|
| 204 |
+
|
| 205 |
+
Key steps:
|
| 206 |
+
|
| 207 |
+
1. **Baseline cohort**: draw populations, sex, age, stage, subtype, therapy, and response class.
|
| 208 |
+
2. **Baseline markers**: sample CA 15-3 and ctDNA baseline values by stage using log-normal distributions.
|
| 209 |
+
3. **Trajectories**: apply response-class–specific multipliers at each timepoint, with log-normal noise, to generate CA 15-3, CA 27-29, and ctDNA levels.
|
| 210 |
+
4. **Summaries**: compute nadirs, best percentage changes, baseline detectability, and ctDNA clearance.
|
| 211 |
+
|
| 212 |
+
## Validation
|
| 213 |
+
|
| 214 |
+
Validation is performed with:
|
| 215 |
+
|
| 216 |
+
- `biomarker_trajectories/scripts/validate_biomarker_trajectories.py`
|
| 217 |
+
|
| 218 |
+
and summarised in:
|
| 219 |
+
|
| 220 |
+
- `biomarker_trajectories/output/validation_report.md`
|
| 221 |
+
|
| 222 |
+
Checks include:
|
| 223 |
+
|
| 224 |
+
- **C01–C02**: Sample size and population counts vs configuration.
|
| 225 |
+
- **C03**: CA 15-3 baseline means increase monotonically with stage.
|
| 226 |
+
- **C04**: CA 15-3 kinetics by response class (deep responders show early declines; early progressors show rises).
|
| 227 |
+
- **C05**: ctDNA clearance is higher in deep responders and low in progression classes.
|
| 228 |
+
- **C06**: Baseline ctDNA detectability is substantially higher in stage IV than in stage I.
|
| 229 |
+
- **C07**: Missingness in key baseline and timeseries variables.
|
| 230 |
+
|
| 231 |
+
## Intended use
|
| 232 |
+
|
| 233 |
+
This dataset is intended for:
|
| 234 |
+
|
| 235 |
+
- Developing and benchmarking models for **biomarker-based response assessment**.
|
| 236 |
+
- Exploring **surrogate endpoints** based on CA 15-3, CA 27-29, and ctDNA dynamics.
|
| 237 |
+
- Teaching about biomarker kinetics in metastatic and advanced breast cancer.
|
| 238 |
+
|
| 239 |
+
It is **not intended** for:
|
| 240 |
+
|
| 241 |
+
- Estimating real-world cutoffs or predictive values.
|
| 242 |
+
- Guiding individual patient management.
|
| 243 |
+
|
| 244 |
+
## Ethical considerations
|
| 245 |
+
|
| 246 |
+
- All data are **synthetically generated** from literature-informed parameters.
|
| 247 |
+
- Population and clinical patterns are inspired by published cohorts but do not represent any specific registry or trial.
|
| 248 |
+
- The goal is to support method development and education around biomarker trajectories in diverse breast cancer populations, including SSA.
|
| 249 |
+
|
| 250 |
+
## License
|
| 251 |
+
|
| 252 |
+
- License: **CC BY-NC 4.0**.
|
| 253 |
+
- Free for non-commercial research, method development, and education with attribution.
|
| 254 |
+
|
| 255 |
+
## Citation
|
| 256 |
+
|
| 257 |
+
If you use this dataset, please cite:
|
| 258 |
+
|
| 259 |
+
> Electric Sheep Africa. "SSA Breast Biomarker Trajectories (CA15-3 / CA27-29 / ctDNA, Synthetic)." Hugging Face Datasets.
|