Kossisoroyce commited on
Commit
a832fe0
·
verified ·
1 Parent(s): 4cd6306

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +259 -0
README.md ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - tumour-markers
6
+ - ctDNA
7
+ - treatment-response
8
+ - trajectories
9
+ - breast-cancer
10
+ - sub-saharan-africa
11
+ license: cc-by-nc-4.0
12
+ pretty_name: SSA Breast Biomarker Trajectories (CA15-3 / CA27-29 / ctDNA)
13
+ task_categories:
14
+ - other
15
+ size_categories:
16
+ - 1K<n<10K
17
+ ---
18
+
19
+ # SSA Breast Biomarker Trajectories (Synthetic)
20
+
21
+ ## Dataset summary
22
+
23
+ This module provides a **synthetic biomarker trajectory dataset** for breast cancer treatment monitoring, focused on:
24
+
25
+ - **Serum tumour markers**: CA 15-3 and CA 27-29.
26
+ - **Circulating tumour DNA (ctDNA)** levels.
27
+ - **Treatment response monitoring** over 0–24 months.
28
+
29
+ It is designed to emulate:
30
+
31
+ - Higher baseline marker levels in advanced-stage disease.
32
+ - Early declines in CA 15-3 and ctDNA in responders.
33
+ - Rising or non-clearing ctDNA in early and late progression.
34
+
35
+ All records are **fully synthetic**, grounded in clinical literature on serial CA15-3/CA27-29 measurement and ctDNA dynamics in metastatic and early breast cancer.
36
+
37
+ ## Cohort design
38
+
39
+ ### Sample size and populations
40
+
41
+ - **Baseline patients**: 6,000.
42
+ - **Populations**:
43
+ - `SSA_West`: 1,500
44
+ - `SSA_East`: 1,500
45
+ - `SSA_Central`: 1,000
46
+ - `SSA_Southern`: 1,000
47
+ - `AAW` (African American women): 1,000
48
+ - `EUR`: 600
49
+ - `EAS`: 400
50
+
51
+ ### Baseline variables
52
+
53
+ - `sex`: predominantly `Female` (~99%).
54
+ - `age_years`: 18–90, with slightly younger distribution in SSA vs EUR/EAS.
55
+ - `stage_at_diagnosis`: I–IV, with later stages more frequent in SSA.
56
+ - `tumor_subtype`:
57
+ - `Luminal_A`, `Luminal_B`, `HER2_enriched`, `Basal_like`, `Normal_like`, with higher basal-like in SSA and AAW.
58
+ - `therapy_class`:
59
+ - `Endocrine_only`
60
+ - `Chemo_only`
61
+ - `Chemo_plus_endocrine`
62
+ - `HER2_targeted`
63
+ - `CDK4_6_plus_endocrine`
64
+ - `response_class` (treatment course):
65
+ - `Deep_response`
66
+ - `Partial_response`
67
+ - `Stable_disease`
68
+ - `Early_progression`
69
+ - `Late_progression`
70
+
71
+ These response classes drive **biomarker trajectories**.
72
+
73
+ ## Time structure
74
+
75
+ Patients are followed at:
76
+
77
+ - `time_months`: [0, 3, 6, 9, 12, 18, 24].
78
+
79
+ At each time point, biomarker levels are simulated conditional on:
80
+
81
+ - `stage_at_diagnosis` (baseline tumour burden).
82
+ - `response_class` (kinetic pattern).
83
+
84
+ ## Biomarkers
85
+
86
+ ### CA 15-3
87
+
88
+ - Units: `U/mL`.
89
+ - Baseline means increase with stage (approximate):
90
+ - Stage I: ~15 U/mL
91
+ - Stage II: ~30 U/mL
92
+ - Stage III: ~60 U/mL
93
+ - Stage IV: ~120 U/mL
94
+ - SD fraction ~0.6 (log-normal variability).
95
+
96
+ Response-class–specific trajectories (multipliers on baseline):
97
+
98
+ - `Deep_response`: rapid drop (e.g., ~50% at 3 months, ~75% reduction by 12 months).
99
+ - `Partial_response`: moderate drop (~30% at 3 months, ~50% reduction by 12 months).
100
+ - `Stable_disease`: flat or slightly drifting around baseline.
101
+ - `Early_progression`: early rise (>10% increase by 3 months, continuing upward).
102
+ - `Late_progression`: initial drop, followed by rise after ~12 months.
103
+
104
+ These patterns reflect published CA15-3 kinetics linking rapid declines to radiologic response and surges to progression.
105
+
106
+ ### CA 27-29
107
+
108
+ - Units: `U/mL`.
109
+ - Modelled as a **correlated companion marker** to CA 15-3:
110
+ - `ca2729_u_per_ml` is sampled as CA 27-29 ≈ CA 15-3 × log-normal noise.
111
+ - Captures that CA 27-29 is clinically used in a similar role to CA 15-3 but with independent assay noise.
112
+
113
+ ### ctDNA
114
+
115
+ - Units: `copies_per_mL`.
116
+ - Baseline log10 means increase with stage:
117
+ - Stage I: ~10^1.3
118
+ - Stage II: ~10^1.7
119
+ - Stage III: ~10^2.1
120
+ - Stage IV: ~10^2.5
121
+ - Detection limit: ~5 copies/mL.
122
+
123
+ Kinetic patterns by `response_class`:
124
+
125
+ - `Deep_response`:
126
+ - Rapid and deep ctDNA decline; many become undetectable by 3–6 months.
127
+ - `Partial_response`:
128
+ - Substantial decline but less complete clearance.
129
+ - `Stable_disease`:
130
+ - Small changes, often hovering near baseline.
131
+ - `Early_progression`:
132
+ - Transient modest fall, followed by strong rise (often >2–3× by 12–24 months).
133
+ - `Late_progression`:
134
+ - Early decline then late rise (mirroring late progression in CA 15-3).
135
+
136
+ Summary flags:
137
+
138
+ - `ctdna_baseline_detectable`
139
+ - `ctdna_cleared_by_6m` (detectable at baseline and undetectable at all timepoints ≤6 months).
140
+
141
+ ## Files and schema
142
+
143
+ ### Baseline table
144
+
145
+ Files:
146
+
147
+ - `biomarker_trajectories_baseline.parquet`
148
+ - `biomarker_trajectories_baseline.csv`
149
+
150
+ Columns (per patient):
151
+
152
+ - Identifiers & demographics:
153
+ - `sample_id`, `population`, `region`, `is_SSA`, `is_reference_panel`, `sex`, `age_years`.
154
+ - Tumour & therapy:
155
+ - `stage_at_diagnosis`, `tumor_subtype`, `therapy_class`, `response_class`.
156
+ - CA 15-3 summary:
157
+ - `ca153_baseline_u_per_ml`
158
+ - `ca153_nadir_u_per_ml`
159
+ - `ca153_best_delta_fraction` (nadir vs baseline, negative values indicate decline).
160
+ - CA 27-29 summary:
161
+ - `ca2729_baseline_u_per_ml`
162
+ - `ca2729_nadir_u_per_ml`
163
+ - `ca2729_best_delta_fraction`.
164
+ - ctDNA summary:
165
+ - `ctdna_baseline_copies_per_ml`
166
+ - `ctdna_min_copies_per_ml`
167
+ - `ctdna_baseline_detectable`
168
+ - `ctdna_cleared_by_6m`.
169
+
170
+ ### Timeseries table
171
+
172
+ Files:
173
+
174
+ - `biomarker_trajectories_timeseries.parquet`
175
+ - `biomarker_trajectories_timeseries.csv`
176
+
177
+ Columns (per patient × timepoint):
178
+
179
+ - `sample_id`
180
+ - `population`
181
+ - `stage_at_diagnosis`
182
+ - `tumor_subtype`
183
+ - `therapy_class`
184
+ - `response_class`
185
+ - `time_months`
186
+ - `ca153_u_per_ml`
187
+ - `ca2729_u_per_ml`
188
+ - `ctdna_copies_per_ml`
189
+ - `ctdna_detectable`
190
+
191
+ ## Generation
192
+
193
+ The dataset is generated using:
194
+
195
+ - `biomarker_trajectories/scripts/generate_biomarker_trajectories.py`
196
+
197
+ with configuration:
198
+
199
+ - `biomarker_trajectories/configs/biomarker_trajectories_config.yaml`
200
+
201
+ and literature inventory:
202
+
203
+ - `biomarker_trajectories/docs/LITERATURE_INVENTORY.csv`
204
+
205
+ Key steps:
206
+
207
+ 1. **Baseline cohort**: draw populations, sex, age, stage, subtype, therapy, and response class.
208
+ 2. **Baseline markers**: sample CA 15-3 and ctDNA baseline values by stage using log-normal distributions.
209
+ 3. **Trajectories**: apply response-class–specific multipliers at each timepoint, with log-normal noise, to generate CA 15-3, CA 27-29, and ctDNA levels.
210
+ 4. **Summaries**: compute nadirs, best percentage changes, baseline detectability, and ctDNA clearance.
211
+
212
+ ## Validation
213
+
214
+ Validation is performed with:
215
+
216
+ - `biomarker_trajectories/scripts/validate_biomarker_trajectories.py`
217
+
218
+ and summarised in:
219
+
220
+ - `biomarker_trajectories/output/validation_report.md`
221
+
222
+ Checks include:
223
+
224
+ - **C01–C02**: Sample size and population counts vs configuration.
225
+ - **C03**: CA 15-3 baseline means increase monotonically with stage.
226
+ - **C04**: CA 15-3 kinetics by response class (deep responders show early declines; early progressors show rises).
227
+ - **C05**: ctDNA clearance is higher in deep responders and low in progression classes.
228
+ - **C06**: Baseline ctDNA detectability is substantially higher in stage IV than in stage I.
229
+ - **C07**: Missingness in key baseline and timeseries variables.
230
+
231
+ ## Intended use
232
+
233
+ This dataset is intended for:
234
+
235
+ - Developing and benchmarking models for **biomarker-based response assessment**.
236
+ - Exploring **surrogate endpoints** based on CA 15-3, CA 27-29, and ctDNA dynamics.
237
+ - Teaching about biomarker kinetics in metastatic and advanced breast cancer.
238
+
239
+ It is **not intended** for:
240
+
241
+ - Estimating real-world cutoffs or predictive values.
242
+ - Guiding individual patient management.
243
+
244
+ ## Ethical considerations
245
+
246
+ - All data are **synthetically generated** from literature-informed parameters.
247
+ - Population and clinical patterns are inspired by published cohorts but do not represent any specific registry or trial.
248
+ - The goal is to support method development and education around biomarker trajectories in diverse breast cancer populations, including SSA.
249
+
250
+ ## License
251
+
252
+ - License: **CC BY-NC 4.0**.
253
+ - Free for non-commercial research, method development, and education with attribution.
254
+
255
+ ## Citation
256
+
257
+ If you use this dataset, please cite:
258
+
259
+ > Electric Sheep Africa. "SSA Breast Biomarker Trajectories (CA15-3 / CA27-29 / ctDNA, Synthetic)." Hugging Face Datasets.