File size: 7,436 Bytes
3809093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
---
language:
- en
tags:
- endocrinology
- hormones
- estradiol
- progesterone
- testosterone
- insulin
- igf-1
- sub-saharan-africa
license: cc-by-nc-4.0
pretty_name: SSA Hormonal Profiles Dataset (Multi-ancestry)
task_categories:
- other
size_categories:
- 1K<n<10K
---

# SSA Hormonal Profiles Dataset (Multi-ancestry, Synthetic)

## Dataset summary

This dataset provides a **synthetic hormonal profile cohort** of 10,000 adults across multiple ancestry groups with a focus on **sub-Saharan Africa (SSA)**. It includes:

- **Estradiol (E2)** and **progesterone (P4)** in women and men (by menopausal status for women).
- **Testosterone (T)** in women and men (by age band).
- **Fasting insulin** levels (by population).
- **IGF-1** levels (by age band).

Values are informed by published **reference intervals and age/sex trends** for these hormones, but all individuals and measurements are fully synthetic.


## Cohort design

### Sample size and populations

- **Total N**: 10,000 synthetic adults.
- **Populations**:
  - `SSA_West`: 2,000
  - `SSA_East`: 2,000
  - `SSA_Central`: 1,500
  - `SSA_Southern`: 1,500
  - `AAW` (African American, admixed): 1,500
  - `EUR` (European reference): 1,000
  - `EAS` (East Asian reference): 500

- **Sex distribution**:
  - `Male`: ~45%
  - `Female`: ~55%

- **Age**: 18–80 years with population-specific means/SDs, loosely aligned with prior cardiovascular and reproductive-history datasets.


## Hormonal variables

### Menopausal status (women)

Variable:

- `menopausal_status` – for women:
  - `premenopausal`
  - `perimenopausal`
  - `postmenopausal`
- For men: `menopausal_status = "NA"`.

Status is assigned by **age band** (18–39, 40–49, 50–80) with probabilities reflecting typical menopause timing:

- 18–39: mostly premenopausal.
- 40–49: mix of pre-, peri-, and postmenopausal.
- 50–80: predominantly postmenopausal.


### Estradiol (E2)

Variable:

- `estradiol_pg_ml` – estradiol in **pg/mL**.

Design anchors:

- Premenopausal women have higher and more variable estradiol (mean ~80 pg/mL, SD ~40), capturing the broad range across the menstrual cycle.
- Perimenopausal women have intermediate values (mean ~50 pg/mL).
- Postmenopausal women have low values (mean ~15 pg/mL) with an approximate upper bound of 20–30 pg/mL.
- Men have low-to-moderate estradiol (mean ~35 pg/mL, SD ~15).

These values are informed qualitatively by **clinical reference intervals** and reviews of estradiol levels in pre- vs postmenopausal women and men.


### Progesterone (P4)

Variable:

- `progesterone_ng_ml` – progesterone in **ng/mL**.

Design anchors:

- Premenopausal women: mean ~3 ng/mL (large SD), representing random-cycle values with luteal peaks.
- Perimenopausal women: mean ~1.5 ng/mL.
- Postmenopausal women: mean ~0.5 ng/mL.
- Men: mean ~0.5 ng/mL.

These reflect the general pattern of high-cycle variation in premenopausal women and low steady values after menopause or in men.


### Testosterone (T)

Variable:

- `testosterone_ng_dl` – total testosterone in **ng/dL**.

Age bands:

- 18–29, 30–39, 40–49, 50–59, 60–80 years.

Design anchors (mid-range values from reference summaries):

- **Men**
  - 18–29: mean ~600 ng/dL.
  - 30–39: ~550 ng/dL.
  - 40–49: ~500 ng/dL.
  - 50–59: ~450 ng/dL.
  - 60–80: ~400 ng/dL.

- **Women**
  - 18–29: mean ~40 ng/dL.
  - 30–39: ~35 ng/dL.
  - 40–49: ~30 ng/dL.
  - 50–59: ~25 ng/dL.
  - 60–80: ~20 ng/dL.

Testosterone decreases with age in both sexes, roughly consistent with published age-specific reference data.


### Fasting insulin

Variable:

- `insulin_fasting_uIU_ml` – fasting serum insulin in **uIU/mL**.

Design anchors:

- Healthy adult reference intervals suggest **2–12 uIU/mL** as typical.
- Population-specific means reflect metabolic differences:
  - SSA and AAW have slightly higher means (~8.5–10 uIU/mL).
  - EUR/EAS have somewhat lower means (~7–7.5 uIU/mL).

Values are truncated between 1 and 40 uIU/mL.


### IGF-1

Variable:

- `igf1_ng_ml` – insulin-like growth factor 1 in **ng/mL**.

Age bands and means reflect **age-related decline** (β‰ˆ15% per decade) from young adulthood:

- 18–29: mean ~250 ng/mL.
- 30–39: ~210 ng/mL.
- 40–49: ~180 ng/mL.
- 50–59: ~150 ng/mL.
- 60–80: ~130 ng/mL.

Values are truncated between 40 and 500 ng/mL.


## File and schema

### `hormonal_profiles_data.parquet` / `hormonal_profiles_data.csv`

One row per synthetic individual with:

- `sample_id`
- `population`, `region`, `is_SSA`, `is_reference_panel`
- `sex` (`Male`, `Female`)
- `age` (18–80 years)
- `menopausal_status` (for women; `NA` for men)
- `estradiol_pg_ml`
- `progesterone_ng_ml`
- `testosterone_ng_dl`
- `insulin_fasting_uIU_ml`
- `igf1_ng_ml`


## Generation

The dataset is generated with:

- `hormonal_profiles/scripts/generate_hormonal_profiles.py`

using configuration in:

- `hormonal_profiles/configs/hormonal_profiles_config.yaml`

and literature curated in:

- `hormonal_profiles/docs/LITERATURE_INVENTORY.csv`

Key modeling steps:

1. **Sample generation** – multi-ancestry sample with age/sex distribution.
2. **Menopausal status assignment** – by age band in women.
3. **Hormone sampling** – for each hormone, sample from normal distributions with age/sex/status-specific means and SDs and truncate to plausible ranges.


## Validation

Validation is implemented in:

- `hormonal_profiles/scripts/validate_hormonal_profiles.py`

Checks include:

- **C01–C02 – Sample size and population counts** vs config.
- **C03 – Estradiol means by sex and menopausal status** vs config.
- **C04 – Progesterone means by sex and menopausal status** vs config.
- **C05 – Testosterone means by sex and age band** vs config.
- **C06 – Insulin means by population** vs config.
- **C07 – IGF-1 means by age band** vs config.
- **C08 – Missingness in key variables**.

The validator writes:

- `hormonal_profiles/output/validation_report.md`

For the released version, the validator reports **overall status `PASS`** (with some checks at `WARN` level where sampling noise produces minor deviations from target means).


## Intended use

This dataset is intended for:

- **Methods development** in endocrine modeling and multi-modal risk prediction.
- Exploring how **age, sex, and menopausal status** relate to key hormonal axes.
- Serving as a **companion** to the reproductive history, body composition, and cardiovascular metrics datasets.

It is **not suitable** for:

- Clinical decision-making or hormone therapy dosing.
- Deriving exact clinical reference intervals.
- Individual-level risk prediction.

All hormone levels are synthetic.


## Ethical considerations

- No real patient data are used.
- Population labels are for simulation and methodological realism only.
- Analyses should be interpreted as methodological demonstrations rather than statements about specific groups.


## License

- License: **CC BY-NC 4.0**.
- Free to use for non-commercial research, education, and methods development with attribution.


## Citation

If you use this dataset, please cite:

> Electric Sheep Africa. "SSA Hormonal Profiles Dataset (Multi-ancestry, Synthetic)." Hugging Face Datasets.

and consider citing relevant endocrine reference works that informed the design (estradiol/progesterone reference intervals, age-related testosterone and IGF-1 studies, and fasting insulin reference interval papers).