--- license: cc-by-sa-4.0 task_categories: - graph-ml pretty_name: 2D dynamic non-linear structural mechanics with a non-linear non-local constitutive law tags: - physics learning - geometry learning dataset_info: features: - name: Base_2_2/Zone list: list: int64 - name: Base_2_2/Zone/CellData/EROSION_STATUS list: float32 - name: Base_2_2/Zone/CellData/EROSION_STATUS_times list: float64 - name: Base_2_2/Zone/Elements_TRI_3/ElementConnectivity list: int64 - name: Base_2_2/Zone/Elements_TRI_3/ElementRange list: int64 - name: Base_2_2/Zone/GridCoordinates/CoordinateX list: float32 - name: Base_2_2/Zone/GridCoordinates/CoordinateY list: float32 - name: Base_2_2/Zone/PointData/U_x list: float32 - name: Base_2_2/Zone/PointData/U_x_times list: float64 - name: Base_2_2/Zone/PointData/U_y list: float32 - name: Base_2_2/Zone/PointData/U_y_times list: float64 splits: - name: train num_bytes: 12283129132 num_examples: 1000 - name: test num_bytes: 32615664 num_examples: 18 download_size: 7125438311 dataset_size: 12315744796 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---

https://i.ibb.co/Xr6B25kd/PB-logo-2-D-Elasto-Plasto-Dynamics.png https://i.ibb.co/FL7WhdWQ/2d-elasto-samples.gif

```yaml data_production: physics: 2D dynamic non-linear structural mechanics, non-linear non-local constitutive law simulator: OpenRadioss type: simulation legal: license: CC-by-SA 4.0 owner: Safran plaid: version: 0.1.10.dev114+gcbd3fd46f.d20251014 ``` Example of commands: ```python from datasets import load_dataset from plaid.bridges import huggingface_bridge repo_id = "chanel/dataset" pb_def_name = "pb_def_name" #`pb_def_name` is to choose from the repo `problem_definitions` folder # Load the dataset hf_datasetdict = load_dataset(repo_id) # Load addition required data flat_cst, key_mappings = huggingface_bridge.load_tree_struct_from_hub(repo_id) pb_def = huggingface_bridge.load_problem_definition_from_hub(repo_id, pb_def_name) # Efficient reconstruction of plaid samples for split_name, hf_dataset in hf_datasetdict.items(): for i in range(len(hf_dataset)): sample = huggingface_bridge.to_plaid_sample( hf_dataset, i, flat_cst[split_name], key_mappings["cgns_types"], ) # Extract input and output features from samples: for t in sample.get_all_mesh_times(): for path in pb_def.get_in_features_identifiers(): sample.get_feature_by_path(path=path, time=t) for path in pb_def.get_out_features_identifiers(): sample.get_feature_by_path(path=path, time=t) ``` This dataset was generated in [PLAID](https://plaid-lib.readthedocs.io/), we refer to this documentation for additional details on how to extract data from `sample` objects. ### Dataset Sources - **Papers:** - [arxiv](https://arxiv.org/abs/2505.02974)