tobiolatunji
commited on
Commit
·
697b2fe
1
Parent(s):
b3010f5
add colab link
Browse files
README.md
CHANGED
|
@@ -134,30 +134,11 @@ afrispeech = load_dataset("tobiolatunji/afrispeech-200", "isizulu", split="train
|
|
| 134 |
dataloader = DataLoader(afrispeech, batch_size=32)
|
| 135 |
```
|
| 136 |
|
| 137 |
-
To find out more about loading and preparing audio datasets, head over to [hf.co/blog/audio-datasets](https://huggingface.co/blog/audio-datasets).
|
| 138 |
|
| 139 |
-
###
|
| 140 |
|
| 141 |
-
|
| 142 |
|
| 143 |
-
AfriSpeech-200 can be downloaded and used as follows:
|
| 144 |
-
|
| 145 |
-
```py
|
| 146 |
-
from datasets import load_dataset
|
| 147 |
-
|
| 148 |
-
afrispeech = load_dataset("tobiolatunji/afrispeech-200", "isizulu") # for isizulu,
|
| 149 |
-
# to download all data for multi-accent fine-tuning uncomment following line
|
| 150 |
-
# afrispeech = load_dataset("tobiolatunji/afrispeech-200", "all")
|
| 151 |
-
|
| 152 |
-
# see structure
|
| 153 |
-
print(afrispeech)
|
| 154 |
-
|
| 155 |
-
# load audio sample on the fly
|
| 156 |
-
audio_input = afrispeech["train"][0]["audio"] # audio bytes
|
| 157 |
-
transcript = afrispeech["train"][0]["transcript"] # transcript
|
| 158 |
-
|
| 159 |
-
# use audio_input and text transcript to fine-tune your model for audio classification
|
| 160 |
-
```
|
| 161 |
|
| 162 |
### Supported Tasks and Leaderboards
|
| 163 |
|
|
|
|
| 134 |
dataloader = DataLoader(afrispeech, batch_size=32)
|
| 135 |
```
|
| 136 |
|
|
|
|
| 137 |
|
| 138 |
+
### Fine-tuning Colab tutorial
|
| 139 |
|
| 140 |
+
To walk through a complete colab tutorial that finetunes a wav2vec2 model on the afrispeech-200 dataset with `transformers`, take a look at this colab notebook [afrispeech/wav2vec2-colab-tutorial](https://colab.research.google.com/drive/1uZYew6pcgN6UE6sFDLohxD_HKivvDXzD?usp=sharing#scrollTo=_UEjJqGsQw24).
|
| 141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
### Supported Tasks and Leaderboards
|
| 144 |
|