JessicaOjo commited on
Commit
53fc510
·
verified ·
1 Parent(s): a6b6da4

add updated README.md

Browse files
Files changed (1) hide show
  1. README.md +628 -0
README.md ADDED
@@ -0,0 +1,628 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - expert-generated
6
+ language:
7
+ - am
8
+ - bbj
9
+ - bm
10
+ - ee
11
+ - ha
12
+ - ig
13
+ - lg
14
+ - luo
15
+ - mos
16
+ - ny
17
+ - pcm
18
+ - rw
19
+ - sn
20
+ - sw
21
+ - tn
22
+ - tw
23
+ - wo
24
+ - xh
25
+ - yo
26
+ - zu
27
+ license:
28
+ - unknown
29
+ multilinguality:
30
+ - multilingual
31
+ size_categories:
32
+ - 10K<n<100K
33
+ source_datasets:
34
+ - original
35
+ task_categories:
36
+ - token-classification
37
+ task_ids:
38
+ - named-entity-recognition
39
+ pretty_name: MasakhaNER-X
40
+ dataset_info:
41
+ - config_name: am
42
+ features:
43
+ - name: id
44
+ dtype: string
45
+ - name: text
46
+ dtype: string
47
+ - name: spans
48
+ sequence: string
49
+ - name: target
50
+ dtype: string
51
+ splits:
52
+ - name: train
53
+ num_examples: 1441
54
+ - name: validation
55
+ num_examples: 250
56
+ - name: test
57
+ num_examples: 500
58
+ - config_name: bbj
59
+ features:
60
+ - name: id
61
+ dtype: string
62
+ - name: text
63
+ dtype: string
64
+ - name: spans
65
+ sequence: string
66
+ - name: target
67
+ dtype: string
68
+ splits:
69
+ - name: train
70
+ num_examples: 1441
71
+ - name: validation
72
+ num_examples: 483
73
+ - name: test
74
+ num_examples: 966
75
+ - config_name: bm
76
+ features:
77
+ - name: id
78
+ dtype: string
79
+ - name: text
80
+ dtype: string
81
+ - name: spans
82
+ sequence: string
83
+ - name: target
84
+ dtype: string
85
+ splits:
86
+ - name: train
87
+ num_examples: 1441
88
+ - name: validation
89
+ num_examples: 638
90
+ - name: test
91
+ num_examples: 1000
92
+ - config_name: ee
93
+ features:
94
+ - name: id
95
+ dtype: string
96
+ - name: text
97
+ dtype: string
98
+ - name: spans
99
+ sequence: string
100
+ - name: target
101
+ dtype: string
102
+ splits:
103
+ - name: train
104
+ num_examples: 1441
105
+ - name: validation
106
+ num_examples: 501
107
+ - name: test
108
+ num_examples: 1000
109
+ - config_name: ha
110
+ features:
111
+ - name: id
112
+ dtype: string
113
+ - name: text
114
+ dtype: string
115
+ - name: spans
116
+ sequence: string
117
+ - name: target
118
+ dtype: string
119
+ splits:
120
+ - name: train
121
+ num_examples: 1441
122
+ - name: validation
123
+ num_examples: 272
124
+ - name: test
125
+ num_examples: 545
126
+ - config_name: ig
127
+ features:
128
+ - name: id
129
+ dtype: string
130
+ - name: text
131
+ dtype: string
132
+ - name: spans
133
+ sequence: string
134
+ - name: target
135
+ dtype: string
136
+ splits:
137
+ - name: train
138
+ num_examples: 1441
139
+ - name: validation
140
+ num_examples: 1000
141
+ - name: test
142
+ num_examples: 1000
143
+ - config_name: lg
144
+ features:
145
+ - name: id
146
+ dtype: string
147
+ - name: text
148
+ dtype: string
149
+ - name: spans
150
+ sequence: string
151
+ - name: target
152
+ dtype: string
153
+ splits:
154
+ - name: train
155
+ num_examples: 1441
156
+ - name: validation
157
+ num_examples: 906
158
+ - name: test
159
+ num_examples: 1000
160
+ - config_name: luo
161
+ features:
162
+ - name: id
163
+ dtype: string
164
+ - name: text
165
+ dtype: string
166
+ - name: spans
167
+ sequence: string
168
+ - name: target
169
+ dtype: string
170
+ splits:
171
+ - name: train
172
+ num_examples: 644
173
+ - name: validation
174
+ num_examples: 92
175
+ - name: test
176
+ num_examples: 185
177
+ - config_name: mos
178
+ features:
179
+ - name: id
180
+ dtype: string
181
+ - name: text
182
+ dtype: string
183
+ - name: spans
184
+ sequence: string
185
+ - name: target
186
+ dtype: string
187
+ splits:
188
+ - name: train
189
+ num_examples: 1441
190
+ - name: validation
191
+ num_examples: 648
192
+ - name: test
193
+ num_examples: 1000
194
+ - config_name: ny
195
+ features:
196
+ - name: id
197
+ dtype: string
198
+ - name: text
199
+ dtype: string
200
+ - name: spans
201
+ sequence: string
202
+ - name: target
203
+ dtype: string
204
+ splits:
205
+ - name: train
206
+ num_examples: 1441
207
+ - name: validation
208
+ num_examples: 893
209
+ - name: test
210
+ num_examples: 1000
211
+ - config_name: pcm
212
+ features:
213
+ - name: id
214
+ dtype: string
215
+ - name: text
216
+ dtype: string
217
+ - name: spans
218
+ sequence: string
219
+ - name: target
220
+ dtype: string
221
+ splits:
222
+ - name: train
223
+ num_examples: 1441
224
+ - name: validation
225
+ num_examples: 1000
226
+ - name: test
227
+ num_examples: 1000
228
+ - config_name: rw
229
+ features:
230
+ - name: id
231
+ dtype: string
232
+ - name: text
233
+ dtype: string
234
+ - name: spans
235
+ sequence: string
236
+ - name: target
237
+ dtype: string
238
+ splits:
239
+ - name: train
240
+ num_examples: 1441
241
+ - name: validation
242
+ num_examples: 1000
243
+ - name: test
244
+ num_examples: 1000
245
+ - config_name: sn
246
+ features:
247
+ - name: id
248
+ dtype: string
249
+ - name: text
250
+ dtype: string
251
+ - name: spans
252
+ sequence: string
253
+ - name: target
254
+ dtype: string
255
+ splits:
256
+ - name: train
257
+ num_examples: 1441
258
+ - name: validation
259
+ num_examples: 887
260
+ - name: test
261
+ num_examples: 1000
262
+ - config_name: sw
263
+ features:
264
+ - name: id
265
+ dtype: string
266
+ - name: text
267
+ dtype: string
268
+ - name: spans
269
+ sequence: string
270
+ - name: target
271
+ dtype: string
272
+ splits:
273
+ - name: train
274
+ num_examples: 1441
275
+ - name: validation
276
+ num_examples: 1000
277
+ - name: test
278
+ num_examples: 1000
279
+ - config_name: tn
280
+ features:
281
+ - name: id
282
+ dtype: string
283
+ - name: text
284
+ dtype: string
285
+ - name: spans
286
+ sequence: string
287
+ - name: target
288
+ dtype: string
289
+ splits:
290
+ - name: train
291
+ num_examples: 1441
292
+ - name: validation
293
+ num_examples: 499
294
+ - name: test
295
+ num_examples: 996
296
+ - config_name: tw
297
+ features:
298
+ - name: id
299
+ dtype: string
300
+ - name: text
301
+ dtype: string
302
+ - name: spans
303
+ sequence: string
304
+ - name: target
305
+ dtype: string
306
+ splits:
307
+ - name: train
308
+ num_examples: 1441
309
+ - name: validation
310
+ num_examples: 605
311
+ - name: test
312
+ num_examples: 1000
313
+ - config_name: wo
314
+ features:
315
+ - name: id
316
+ dtype: string
317
+ - name: text
318
+ dtype: string
319
+ - name: spans
320
+ sequence: string
321
+ - name: target
322
+ dtype: string
323
+ splits:
324
+ - name: train
325
+ num_examples: 1441
326
+ - name: validation
327
+ num_examples: 923
328
+ - name: test
329
+ num_examples: 1000
330
+ - config_name: xh
331
+ features:
332
+ - name: id
333
+ dtype: string
334
+ - name: text
335
+ dtype: string
336
+ - name: spans
337
+ sequence: string
338
+ - name: target
339
+ dtype: string
340
+ splits:
341
+ - name: train
342
+ num_examples: 1441
343
+ - name: validation
344
+ num_examples: 817
345
+ - name: test
346
+ num_examples: 1000
347
+ - config_name: yo
348
+ features:
349
+ - name: id
350
+ dtype: string
351
+ - name: text
352
+ dtype: string
353
+ - name: spans
354
+ sequence: string
355
+ - name: target
356
+ dtype: string
357
+ splits:
358
+ - name: train
359
+ num_examples: 1441
360
+ - name: validation
361
+ num_examples: 1000
362
+ - name: test
363
+ num_examples: 1000
364
+ - config_name: zu
365
+ features:
366
+ - name: id
367
+ dtype: string
368
+ - name: text
369
+ dtype: string
370
+ - name: spans
371
+ sequence: string
372
+ - name: target
373
+ dtype: string
374
+ splits:
375
+ - name: train
376
+ num_examples: 1441
377
+ - name: validation
378
+ num_examples: 836
379
+ - name: test
380
+ num_examples: 1000
381
+ config_names:
382
+ - am
383
+ - bbj
384
+ - bm
385
+ - ee
386
+ - ha
387
+ - ig
388
+ - lg
389
+ - luo
390
+ - mos
391
+ - ny
392
+ - pcm
393
+ - rw
394
+ - sn
395
+ - sw
396
+ - tn
397
+ - tw
398
+ - wo
399
+ - xh
400
+ - yo
401
+ - zu
402
+ ---
403
+
404
+ # Dataset Card for MasakhaNER
405
+
406
+ ## Table of Contents
407
+ - [Dataset Description](#dataset-description)
408
+ - [Dataset Summary](#dataset-summary)
409
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
410
+ - [Languages](#languages)
411
+ - [Dataset Structure](#dataset-structure)
412
+ - [Data Instances](#data-instances)
413
+ - [Data Fields](#data-fields)
414
+ - [Data Splits](#data-splits)
415
+ - [Dataset Creation](#dataset-creation)
416
+ - [Curation Rationale](#curation-rationale)
417
+ - [Source Data](#source-data)
418
+ - [Annotations](#annotations)
419
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
420
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
421
+ - [Social Impact of Dataset](#social-impact-of-dataset)
422
+ - [Discussion of Biases](#discussion-of-biases)
423
+ - [Other Known Limitations](#other-known-limitations)
424
+ - [Additional Information](#additional-information)
425
+ - [Dataset Curators](#dataset-curators)
426
+ - [Licensing Information](#licensing-information)
427
+ - [Citation Information](#citation-information)
428
+ - [Contributions](#contributions)
429
+
430
+ ## Dataset Description
431
+
432
+ - **Homepage:** [homepage](https://github.com/masakhane-io/masakhane-ner/tree/main/xtreme-up/MasakhaNER-X)
433
+ - **Repository:** [github](https://github.com/masakhane-io/masakhane-ner/tree/main/xtreme-up/MasakhaNER-X)
434
+ - **Paper:** [paper](https://aclanthology.org/2022.emnlp-main.298)
435
+ - **Point of Contact:** [Masakhane](https://www.masakhane.io/) or didelani@lsv.uni-saarland.de
436
+
437
+ ### Dataset Summary
438
+
439
+ MasakhaNER-X is an aggregation of MasakhaNER 1.0 and MasakhaNER 2.0 datasets for 20 African languages. The dataset is not in CoNLL format. The input is the original raw text while the output is byte-level span annotations.
440
+
441
+ Example:
442
+ {"example_id": "test-00015916", "language": "pcm", "text": "By Bashir Ibrahim Hassan", "spans": [{"start_byte": 3, "limit_byte": 24, "label": "PER"}], "target": "PER: Bashir Ibrahim Hassan"}
443
+
444
+ MasakhaNER-X is a named entity dataset consisting of PER, ORG, LOC, and DATE entities annotated by Masakhane for twenty African languages:
445
+ - Amharic
446
+ - Ghomala
447
+ - Bambara
448
+ - Ewe
449
+ - Hausa
450
+ - Igbo
451
+ - Kinyarwanda
452
+ - Luganda
453
+ - Luo
454
+ - Mossi
455
+ - Chichewa
456
+ - Nigerian-Pidgin
457
+ - chiShona
458
+ - Swahili
459
+ - Setswana
460
+ - Twi
461
+ - Wolof
462
+ - Xhosa
463
+ - Yoruba
464
+ - Zulu
465
+
466
+ The train/validation/test sets are available for all the twenty languages.
467
+
468
+ For more details see https://aclanthology.org/2022.emnlp-main.298
469
+
470
+
471
+ ### Supported Tasks and Leaderboards
472
+
473
+ [More Information Needed]
474
+
475
+ - `named-entity-recognition`: The performance in this task is measured with [Span F1](https://github.com/google-research/multilingual-t5/blob/9dcd60fc43c31a8651461f9a21894a134ba22166/multilingual_t5/evaluation/metrics.py#L123) (higher is better). A named entity is correct only if it is an exact match of the corresponding entity in the data.
476
+
477
+ ### Languages
478
+
479
+ There are twenty languages available :
480
+ - Amharic (am)
481
+ - Ghomala (bbj)
482
+ - Bambara (bm)
483
+ - Ewe (ee)
484
+ - Hausa (ha)
485
+ - Igbo (ig)
486
+ - Kinyarwanda (rw)
487
+ - Luganda (lg)
488
+ - Luo (luo)
489
+ - Mossi (mos)
490
+ - Chichewa (ny)
491
+ - Nigerian-Pidgin (pcm)
492
+ - chiShona (sn)
493
+ - Swahili (sw)
494
+ - Setswana (tn)
495
+ - Twi (tw)
496
+ - Wolof (wo)
497
+ - Xhosa (xh)
498
+ - Yoruba (yo)
499
+ - Zulu (zu)
500
+
501
+ ## Dataset Structure
502
+
503
+ ### Data Instances
504
+
505
+ The examples look like this for Nigerian-Pidgin:
506
+
507
+ ```
508
+ from datasets import load_dataset
509
+ data = load_dataset('masakhaner-x', 'pcm')
510
+
511
+ # Please, specify the language code
512
+
513
+ # A data point consists of sentences seperated by empty line and tab-seperated tokens and tags.
514
+ {'id': '0',
515
+ 'text': "Most of de people who dey opposed to Prez Akufo-Addo en decision say within 3 weeks of lockdown, total number of cases for Ghana rise from around 100 catch 1024.",
516
+ 'spans': [{"start_byte": 42, "limit_byte": 52, "label": "PER"}, {"start_byte": 76, "limit_byte": 83, "label": "DATE"}, {"start_byte": 123, "limit_byte": 128, "label": "LOC"}]
517
+ 'target': "PER: Akufo-Addo $$ DATE: 3 weeks $$ LOC: Ghana"
518
+ }
519
+
520
+ ```
521
+
522
+ ### Data Fields
523
+
524
+ - `id`: id of the sample
525
+ - `text`: sentence containing entities
526
+ - `spans`: details of each named entities in the sentence
527
+ - `target`: named entities and their values. Each named entity is separated by '$$'
528
+
529
+ The NER tags correspond to this list:
530
+ ```
531
+ "PER", "ORG", "LOC", and "DATE",
532
+ ```
533
+
534
+ ### Data Splits
535
+
536
+ For all languages, there are three splits - `train`, `validation` and `test` splits.
537
+
538
+ The splits have the following sizes :
539
+
540
+ | Language | train | validation | test |
541
+ |-----------------|------:|-----------:|-----:|
542
+ | Amharic | 1441 | 250 | 500 |
543
+ | Gbomola | 1441 | 483 | 966 |
544
+ | Bambara | 1441 | 638 | 1000|
545
+ | Ewe | 1441 | 501 | 1000|
546
+ | Hausa | 1441 | 1000| 1000|
547
+ | Igbo | 1441 | 319 | 638 |
548
+ | Kinyarwanda | 1441 | 1000| 1000|
549
+ | Luganda | 1441 | 906 | 1000|
550
+ | Luo | 644 | 92 | 185 |
551
+ | Mossi | 1441 | 648 | 1000|
552
+ | Chichewa | 1441 | 893 | 1000|
553
+ | Nigerian-Pidgin | 1441 | 1000| 1000|
554
+ | Shona | 1441 | 887 | 1000|
555
+ | Swahili | 1441 | 1000| 1000|
556
+ | Setswana | 1441 | 499 | 996 |
557
+ | Twi | 1441 | 605 | 1000|
558
+ | Wolof | 1441 | 923 | 1000|
559
+ | Xhosa | 1441 | 817 | 1000|
560
+ | Yoruba | 1441 | 1000| 1000|
561
+ | Zulu | 1441 | 836 | 1000|
562
+
563
+
564
+ ### Licensing Information
565
+
566
+ The licensing status of the data is CC 4.0 Non-Commercial
567
+
568
+ ### Citation Information
569
+
570
+ Provide the [BibTex](http://www.bibtex.org/)-formatted reference for the dataset. For example:
571
+ ```
572
+ @inproceedings{adelani-etal-2022-masakhaner,
573
+ title = "{M}asakha{NER} 2.0: {A}frica-centric Transfer Learning for Named Entity Recognition",
574
+ author = "Adelani, David and
575
+ Neubig, Graham and
576
+ Ruder, Sebastian and
577
+ Rijhwani, Shruti and
578
+ Beukman, Michael and
579
+ Palen-Michel, Chester and
580
+ Lignos, Constantine and
581
+ Alabi, Jesujoba and
582
+ Muhammad, Shamsuddeen and
583
+ Nabende, Peter and
584
+ Dione, Cheikh M. Bamba and
585
+ Bukula, Andiswa and
586
+ Mabuya, Rooweither and
587
+ Dossou, Bonaventure F. P. and
588
+ Sibanda, Blessing and
589
+ Buzaaba, Happy and
590
+ Mukiibi, Jonathan and
591
+ Kalipe, Godson and
592
+ Mbaye, Derguene and
593
+ Taylor, Amelia and
594
+ Kabore, Fatoumata and
595
+ Emezue, Chris Chinenye and
596
+ Aremu, Anuoluwapo and
597
+ Ogayo, Perez and
598
+ Gitau, Catherine and
599
+ Munkoh-Buabeng, Edwin and
600
+ Memdjokam Koagne, Victoire and
601
+ Tapo, Allahsera Auguste and
602
+ Macucwa, Tebogo and
603
+ Marivate, Vukosi and
604
+ Elvis, Mboning Tchiaze and
605
+ Gwadabe, Tajuddeen and
606
+ Adewumi, Tosin and
607
+ Ahia, Orevaoghene and
608
+ Nakatumba-Nabende, Joyce and
609
+ Mokono, Neo Lerato and
610
+ Ezeani, Ignatius and
611
+ Chukwuneke, Chiamaka and
612
+ Oluwaseun Adeyemi, Mofetoluwa and
613
+ Hacheme, Gilles Quentin and
614
+ Abdulmumin, Idris and
615
+ Ogundepo, Odunayo and
616
+ Yousuf, Oreen and
617
+ Moteu, Tatiana and
618
+ Klakow, Dietrich",
619
+ booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
620
+ month = dec,
621
+ year = "2022",
622
+ address = "Abu Dhabi, United Arab Emirates",
623
+ publisher = "Association for Computational Linguistics",
624
+ url = "https://aclanthology.org/2022.emnlp-main.298",
625
+ pages = "4488--4508",
626
+ abstract = "African languages are spoken by over a billion people, but they are under-represented in NLP research and development. Multiple challenges exist, including the limited availability of annotated training and evaluation datasets as well as the lack of understanding of which settings, languages, and recently proposed methods like cross-lingual transfer will be effective. In this paper, we aim to move towards solutions for these challenges, focusing on the task of named entity recognition (NER). We present the creation of the largest to-date human-annotated NER dataset for 20 African languages. We study the behaviour of state-of-the-art cross-lingual transfer methods in an Africa-centric setting, empirically demonstrating that the choice of source transfer language significantly affects performance. While much previous work defaults to using English as the source language, our results show that choosing the best transfer language improves zero-shot F1 scores by an average of 14{\%} over 20 languages as compared to using English.",
627
+ }
628
+ ```