File size: 3,387 Bytes
00276cc
 
8ca70f1
 
 
 
 
1b4efab
 
 
 
 
 
 
 
 
9734972
 
849612e
9734972
 
f72586c
ffa2879
 
 
 
f72586c
ffa2879
 
 
 
 
 
 
 
 
 
 
9734972
 
 
849612e
 
 
 
9734972
 
 
 
f72586c
9734972
 
 
f72586c
 
 
 
 
 
 
 
 
 
9734972
 
 
ffa2879
9734972
 
 
ffa2879
9734972
 
 
 
 
ffa2879
9734972
ffa2879
9734972
 
ffa2879
 
9734972
 
 
 
 
 
 
 
849612e
 
9734972
 
 
 
 
 
 
3f798df
 
 
9734972
 
 
 
 
 
 
 
0c9d99b
 
 
 
 
 
9734972
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
---
license: cc-by-sa-4.0
task_categories:
- text-classification
language:
- en
pretty_name: Media Bias Identification Benchmark
configs:
  - cognitive-bias
  - fake-news
  - gender-bias
  - hate-speech
  - linguistic-bias
  - political-bias
  - racial-bias
  - text-level-bias
---

# Dataset Card for Media-Bias-Identification-Benchmark

## Table of Contents
- [Dataset Card for Media-Bias-Identification-Benchmark](#dataset-card-for-mbib)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Tasks and Information](#tasks-and-information)
    - [Baseline](#baseline)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
      - [cognitive-bias](#cognitive-bias)
    - [Data Fields](#data-fields)
  - [Considerations for Using the Data](#considerations-for-using-the-data)
    - [Social Impact of Dataset](#social-impact-of-dataset)
    - [Discussion of Biases](#discussion-of-biases)
    - [Other Known Limitations](#other-known-limitations)
    - [Citation Information](#citation-information)
    - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://github.com/Media-Bias-Group/Media-Bias-Identification-Benchmark
- **Repository:** https://github.com/Media-Bias-Group/Media-Bias-Identification-Benchmark
- **Paper:** TODO
- **Point of Contact:** [Martin Wessel](mailto:martin.wessel@uni-konstanz.de)




### Baseline


<table>
        <tr><td><b>Task</b></td><td><b>Model</b></td><td><b>Micro F1</b></td><td><b>Macro F1</b></td></tr>

<td>cognitive-bias</td> <td> ConvBERT/ConvBERT</td> <td>0.7126</td> <td> 0.7664</td></tr>
<td>fake-news</td> <td>Bart/RoBERTa-T</td> <td>0.6811</td> <td> 0.7533</td> </tr>
<td>gender-bias</td> <td> RoBERTa-T/ELECTRA</td> <td>0.8334</td> <td>0.8211</td> </tr>
<td>hate-speech</td> <td>RoBERTA-T/Bart</td> <td>0.8897</td> <td> 0.7310</td> </tr>
<td>linguistic-bias</td> <td> ConvBERT/Bart </td> <td> 0.7044 </td> <td> 0.4995 </td> </tr>
<td>political-bias</td> <td> ConvBERT/ConvBERT </td> <td> 0.7041 </td> <td> 0.7110 </td> </tr>
<td>racial-bias</td> <td> ConvBERT/ELECTRA </td> <td> 0.8772 </td> <td> 0.6170 </td> </tr>
<td>text-leve-bias</td> <td> ConvBERT/ConvBERT </td> <td> 0.7697</td> <td> 0.7532 </td> </tr>
</table>




### Languages

All datasets are in English

## Dataset Structure

### Data Instances

#### cognitive-bias

An example of one training instance looks as follows. 
```json
{
  "text": "A defense bill includes language that would require military hospitals to provide abortions on demand",
  "label": 1
}
```




### Data Fields

- `text`: a sentence from various sources (eg., news articles, twitter, other social media).
- `label`: binary indicator of bias (0 = unbiased, 1 = biased)




## Considerations for Using the Data

### Social Impact of Dataset
We believe that MBIB offers a new common ground
for research in the domain, especially given the rising amount of
(research) attention directed toward media bias





### Citation Information

```
@inproceedings{
    title = {Introducing MBIB - the first Media Bias Identification Benchmark Task and Dataset Collection},
    author = {Wessel, Martin and Spinde, Timo and Horych, Tomáš and Ruas, Terry and Aizawa, Akiko and Gipp, Bela},
    year = {2023},
    note = {[in review]}
}
```