---
license: cc-by-sa-4.0
task_categories:
- text-classification
language:
- en
pretty_name: Media Bias Identification Benchmark
configs:
- cognitive-bias
- fake-news
- gender-bias
- hate-speech
- linguistic-bias
- political-bias
- racial-bias
- text-level-bias
---
# Dataset Card for Media-Bias-Identification-Benchmark
## Table of Contents
- [Dataset Card for Meida-Bias-Identification-Benchmark](#dataset-card-for-mbib)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Tasks and Information](#tasks-and-information)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [cognitive-bias](#cognitive-bias)
- [Data Fields](#data-fields)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/Media-Bias-Group/Media-Bias-Identification-Benchmark
- **Repository:** https://github.com/Media-Bias-Group/Media-Bias-Identification-Benchmark
- **Paper:** TODO
- **Point of Contact:** [Martin Wessel](mailto:martin.wessel@uni-konstanz.de)
### Dataset Summary
TODO
### Tasks and Information
Baseline
| Dataset | ECtHR A | ECtHR B | SCOTUS | EUR-LEX | LEDGAR | UNFAIR-ToS | CaseHOLD |
| Model | μ-F1 / m-F1 | μ-F1 / m-F1 | μ-F1 / m-F1 | μ-F1 / m-F1 | μ-F1 / m-F1 | μ-F1 / m-F1 | μ-F1 / m-F1 |
| TFIDF+SVM | 64.7 / 51.7 | 74.6 / 65.1 | 78.2 / 69.5 | 71.3 / 51.4 | 87.2 / 82.4 | 95.4 / 78.8 | n/a |
| Medium-sized Models (L=12, H=768, A=12) |
BERT | 71.2 / 63.6 | 79.7 / 73.4 | 68.3 / 58.3 | 71.4 / 57.2 | 87.6 / 81.8 | 95.6 / 81.3 | 70.8 |
RoBERTa | 69.2 / 59.0 | 77.3 / 68.9 | 71.6 / 62.0 | 71.9 / 57.9 | 87.9 / 82.3 | 95.2 / 79.2 | 71.4 |
DeBERTa | 70.0 / 60.8 | 78.8 / 71.0 | 71.1 / 62.7 | 72.1 / 57.4 | 88.2 / 83.1 | 95.5 / 80.3 | 72.6 |
Longformer | 69.9 / 64.7 | 79.4 / 71.7 | 72.9 / 64.0 | 71.6 / 57.7 | 88.2 / 83.0 | 95.5 / 80.9 | 71.9 |
BigBird | 70.0 / 62.9 | 78.8 / 70.9 | 72.8 / 62.0 | 71.5 / 56.8 | 87.8 / 82.6 | 95.7 / 81.3 | 70.8 |
Legal-BERT | 70.0 / 64.0 | 80.4 / 74.7 | 76.4 / 66.5 | 72.1 / 57.4 | 88.2 / 83.0 | 96.0 / 83.0 | 75.3 |
CaseLaw-BERT | 69.8 / 62.9 | 78.8 / 70.3 | 76.6 / 65.9 | 70.7 / 56.6 | 88.3 / 83.0 | 96.0 / 82.3 | 75.4 |
| Large-sized Models (L=24, H=1024, A=18) |
| RoBERTa | 73.8 / 67.6 | 79.8 / 71.6 | 75.5 / 66.3 | 67.9 / 50.3 | 88.6 / 83.6 | 95.8 / 81.6 | 74.4 |
### Languages
All datasets are in English
## Dataset Structure
### Data Instances
#### cognitive-bias
An example of one training instance looks as follows.
```json
{
"text": "A defense bill includes language that would require military hospitals to provide abortions on demand",
"label": 1
}
```
### Data Fields
- `text`: a sentence from various sources (eg., news articles, twitter, other social media).
- `label`: binary indicator of bias (0 = unbiased, 1 = biased)
## Considerations for Using the Data
### Social Impact of Dataset
TODO
### Discussion of Biases
TODO
### Other Known Limitations
TODO
### Citation Information
```
TODO
```
### Contributions
TODO