--- license: cc-by-sa-4.0 task_categories: - text-classification language: - en pretty_name: Media Bias Identification Benchmark configs: - cognitive-bias - fake-news - gender-bias - hate-speech - linguistic-bias - political-bias - racial-bias - text-level-bias --- # Dataset Card for Media-Bias-Identification-Benchmark ## Table of Contents - [Dataset Card for Meida-Bias-Identification-Benchmark](#dataset-card-for-mbib) - [Table of Contents](#table-of-contents) - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Tasks and Information](#tasks-and-information) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [cognitive-bias](#cognitive-bias) - [Data Fields](#data-fields) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** https://github.com/Media-Bias-Group/Media-Bias-Identification-Benchmark - **Repository:** https://github.com/Media-Bias-Group/Media-Bias-Identification-Benchmark - **Paper:** TODO - **Point of Contact:** [Martin Wessel](mailto:martin.wessel@uni-konstanz.de) ### Dataset Summary TODO ### Tasks and Information
DatasetSourceSub-domainTask TypeClasses
ECtHR (Task A) Chalkidis et al. (2019) ECHRMulti-label classification10+1
ECtHR (Task B) Chalkidis et al. (2021a) ECHRMulti-label classification 10+1
SCOTUS Spaeth et al. (2020)US LawMulti-class classification14
EUR-LEX Chalkidis et al. (2021b)EU LawMulti-label classification100
LEDGAR Tuggener et al. (2020)ContractsMulti-class classification100
UNFAIR-ToS Lippi et al. (2019)ContractsMulti-label classification8+1
CaseHOLDZheng et al. (2021)US LawMultiple choice QAn/a
Baseline
DatasetECtHR AECtHR BSCOTUSEUR-LEXLEDGARUNFAIR-ToSCaseHOLD
Modelμ-F1 / m-F1 μ-F1 / m-F1 μ-F1 / m-F1 μ-F1 / m-F1 μ-F1 / m-F1 μ-F1 / m-F1μ-F1 / m-F1
TFIDF+SVM 64.7 / 51.7 74.6 / 65.1 78.2 / 69.5 71.3 / 51.4 87.2 / 82.4 95.4 / 78.8n/a
Medium-sized Models (L=12, H=768, A=12)
BERT 71.2 / 63.6 79.7 / 73.4 68.3 / 58.3 71.4 / 57.2 87.6 / 81.8 95.6 / 81.3 70.8
RoBERTa 69.2 / 59.0 77.3 / 68.9 71.6 / 62.0 71.9 / 57.9 87.9 / 82.3 95.2 / 79.2 71.4
DeBERTa 70.0 / 60.8 78.8 / 71.0 71.1 / 62.7 72.1 / 57.4 88.2 / 83.1 95.5 / 80.3 72.6
Longformer 69.9 / 64.7 79.4 / 71.7 72.9 / 64.0 71.6 / 57.7 88.2 / 83.0 95.5 / 80.9 71.9
BigBird 70.0 / 62.9 78.8 / 70.9 72.8 / 62.0 71.5 / 56.8 87.8 / 82.6 95.7 / 81.3 70.8
Legal-BERT 70.0 / 64.0 80.4 / 74.7 76.4 / 66.5 72.1 / 57.4 88.2 / 83.0 96.0 / 83.0 75.3
CaseLaw-BERT 69.8 / 62.9 78.8 / 70.3 76.6 / 65.9 70.7 / 56.6 88.3 / 83.0 96.0 / 82.3 75.4
Large-sized Models (L=24, H=1024, A=18)
RoBERTa 73.8 / 67.6 79.8 / 71.6 75.5 / 66.3 67.9 / 50.3 88.6 / 83.6 95.8 / 81.6 74.4
### Languages All datasets are in English ## Dataset Structure ### Data Instances #### cognitive-bias An example of one training instance looks as follows. ```json { "text": "A defense bill includes language that would require military hospitals to provide abortions on demand", "label": 1 } ``` ### Data Fields - `text`: a sentence from various sources (eg., news articles, twitter, other social media). - `label`: binary indicator of bias (0 = unbiased, 1 = biased) ## Considerations for Using the Data ### Social Impact of Dataset TODO ### Discussion of Biases TODO ### Other Known Limitations TODO ### Citation Information ``` TODO ``` ### Contributions TODO