Upload 7 files
Browse files- .gitattributes +1 -0
- README.md +245 -0
- media/CSWildPlaces_overview.png +3 -0
- media/CS_Wild_Places_README.pdf +3 -0
- media/dataset_cswp_baseline.png +3 -0
- media/dataset_cswp_unseen.png +3 -0
- media/hotformerloc_architecture.png +3 -0
- media/radar_plot.svg +0 -0
.gitattributes
CHANGED
|
@@ -57,3 +57,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 57 |
# Video files - compressed
|
| 58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 57 |
# Video files - compressed
|
| 58 |
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 59 |
*.webm filter=lfs diff=lfs merge=lfs -text
|
| 60 |
+
media/CS_Wild_Places_README.pdf filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# HOTFormerLoc: Hierarchical Octree Transformer for Versatile Lidar Place Recognition Across Ground and Aerial Views
|
| 2 |
+
|
| 3 |
+
### What's new ###
|
| 4 |
+
* [2025-07-31] HOTFormerLoc v1.1.0 release, fixing significant memory consumption and batch construction time in certain instances.
|
| 5 |
+
* [2025-03-26] Training and evaluation code released. CS-Wild-Places dataset released.
|
| 6 |
+
|
| 7 |
+
## Description
|
| 8 |
+
This is the official repository for the paper:
|
| 9 |
+
|
| 10 |
+
**HOTFormerLoc: Hierarchical Octree Transformer for Versatile Lidar Place Recognition Across Ground and Aerial Views**, CVPR 2025 by *Ethan Griffiths, Maryam Haghighat, Simon Denman, Clinton Fookes, and Milad Ramezani*\
|
| 11 |
+
[[**Website**](https://csiro-robotics.github.io/HOTFormerLoc)] <!-- [[**Paper**](https://cvpr.thecvf.com)] --> [[**arXiv**](https://arxiv.org/abs/2503.08140)] <!-- [[**Video**](https://youtube.com)] --> [[**CS-Wild-Places Dataset**](https://data.csiro.au/collection/csiro:64896)] [[**CS-Wild-Places README**](https://github.com/csiro-robotics/HOTFormerLoc/blob/main/media/CS_Wild_Places_README.pdf)]
|
| 12 |
+
|
| 13 |
+

|
| 14 |
+
*HOTFormerLoc Architecture*
|
| 15 |
+
|
| 16 |
+
We present **HOTFormerLoc**, a novel and versatile **H**ierarchical **O**ctree-based **T**rans**Former** for large-scale 3D place recognition. We propose an octree-based multi-scale attention mechanism that captures spatial and semantic features across granularities, making it suitable for both ground-to-ground and ground-to-aerial scenarios across urban and forest environments.
|
| 17 |
+
|
| 18 |
+
<!-- <img src="media/radar_plot.svg" alt="Hero Figure" width="50%" height="auto" style="float: right;"> -->
|
| 19 |
+
|
| 20 |
+
In addition, we introduce our novel dataset: [**CS-Wild-Places**](https://data.csiro.au/collection/csiro:64896), a 3D cross-source dataset featuring point cloud data from aerial and ground lidar scans captured in four dense forests. Point clouds in CS-Wild-Places contain representational gaps and distinctive attributes such as varying point densities and noise patterns, making it a challenging benchmark for cross-view localisation in the wild.
|
| 21 |
+
|
| 22 |
+

|
| 23 |
+
*CS-Wild-Places dataset. (Top row) birds eye view of aerial global maps from all four forests.
|
| 24 |
+
(Bottom row) sample ground and aerial submap from each forest.*
|
| 25 |
+
|
| 26 |
+
Our results demonstrate that HOTFormerLoc achieves a top-1 average recall improvement of 5.5% – 11.5% on the CS-Wild-Places benchmark. Furthermore, it consistently outperforms SOTA 3D place recognition methods, with an average performance gain of 4.9% on well established urban and forest datasets.
|
| 27 |
+
|
| 28 |
+
<!--  -->
|
| 29 |
+
<img src="media/radar_plot.svg" alt="Hero Figure" width="50%" height="auto" style="display: block; margin: auto;">
|
| 30 |
+
|
| 31 |
+
### Citation
|
| 32 |
+
If you find this work useful, please consider citing:
|
| 33 |
+
```
|
| 34 |
+
@InProceedings{HOTFormerLoc,
|
| 35 |
+
author = {Griffiths, Ethan and Haghighat, Maryam and Denman, Simon and Fookes, Clinton and Ramezani, Milad},
|
| 36 |
+
title = {{HOTFormerLoc}: {Hierarchical Octree Transformer} for {Versatile Lidar Place Recognition Across Ground} and {Aerial Views}},
|
| 37 |
+
booktitle = {2025 {IEEE}/{CVF Conference} on {Computer Vision} and {Pattern Recognition} ({CVPR})},
|
| 38 |
+
year = {2025},
|
| 39 |
+
month = {June},
|
| 40 |
+
}
|
| 41 |
+
```
|
| 42 |
+
<!-- month = {todo},
|
| 43 |
+
pages = {todo} -->
|
| 44 |
+
|
| 45 |
+
## Environment and Dependencies
|
| 46 |
+
Code was tested using Python 3.11 with PyTorch 2.1.1 and CUDA 12.1 on a Linux system. We use conda to manage dependencies (although we recommend [mamba](https://mamba.readthedocs.io/en/latest/installation/mamba-installation.html) for a much faster install).
|
| 47 |
+
|
| 48 |
+
### Installation
|
| 49 |
+
```
|
| 50 |
+
# Note: replace 'mamba' with 'conda' if using a vanilla conda install
|
| 51 |
+
mamba create -n hotformerloc python=3.11 -c conda-forge
|
| 52 |
+
mamba activate hotformerloc
|
| 53 |
+
mamba install 'numpy<2.0' -c conda-forge
|
| 54 |
+
mamba install pytorch==2.1.1 torchvision==0.16.1 pytorch-cuda=12.1 -c pytorch -c nvidia -c conda-forge
|
| 55 |
+
pip install -r requirements.txt
|
| 56 |
+
pip install libs/dwconv
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
Modify the `PYTHONPATH` environment variable to include the absolute path to the repository root folder (ensure this variable is set every time you open a new shell):
|
| 60 |
+
```export PYTHONPATH
|
| 61 |
+
export PYTHONPATH=$PYTHONPATH:<path/to/HOTFormerLoc>
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
## Datasets
|
| 65 |
+
|
| 66 |
+
### Wild-Places
|
| 67 |
+
We train on the Wild-Places dataset introduced in *Wild-Places: A Large-Scale Dataset for Lidar Place Recognition in Unstructured Natural Environments* ([link](https://arxiv.org/pdf/2211.12732)).
|
| 68 |
+
|
| 69 |
+
Download the dataset [here](https://csiro-robotics.github.io/Wild-Places/#8-Download), and place or symlink the data in `data/wild_places`.
|
| 70 |
+
|
| 71 |
+
Run the following to fix the broken timestamps in the poses files:
|
| 72 |
+
```
|
| 73 |
+
cd datasets/WildPlaces
|
| 74 |
+
python fix_broken_timestamps.py \
|
| 75 |
+
--root '../../data/wild_places/data/' \
|
| 76 |
+
--csv_filename 'poses.csv' \
|
| 77 |
+
--csv_savename 'poses_fixed.csv' \
|
| 78 |
+
--cloud_folder 'Clouds'
|
| 79 |
+
|
| 80 |
+
python fix_broken_timestamps.py \
|
| 81 |
+
--root '../../data/wild_places/data/' \
|
| 82 |
+
--csv_filename 'poses_aligned.csv' \
|
| 83 |
+
--csv_savename 'poses_aligned_fixed.csv' \
|
| 84 |
+
--cloud_folder 'Clouds_downsampled'
|
| 85 |
+
```
|
| 86 |
+
|
| 87 |
+
Before network training or evaluation, run the below code to generate pickles with positive and negative point clouds for each anchor point cloud:
|
| 88 |
+
```
|
| 89 |
+
cd datasets/WildPlaces
|
| 90 |
+
python generate_training_tuples.py \
|
| 91 |
+
--root '../../data/wild_places/data/'
|
| 92 |
+
|
| 93 |
+
python generate_test_sets.py \
|
| 94 |
+
--root '../../data/wild_places/data/'
|
| 95 |
+
```
|
| 96 |
+
|
| 97 |
+
### CS-Wild-Places
|
| 98 |
+
We train on our novel CS-Wild-Places dataset, introduced in further detail in our [paper](https://arxiv.org/abs/2503.08140). CS-Wild-Places is built upon the ground traversals introduced by Wild-Places, so it is required to download the Wild-Places dataset alongside our data following the instructions in the above section (generating train/test pickles for Wild-Places is not required for CS-Wild-Places, so this step can be skipped). Note that the full Wild-Places dataset must be downloaded as our post-processing utilises the full resolution submaps.
|
| 99 |
+
|
| 100 |
+
Download our dataset from [CSIRO's data access portal](https://data.csiro.au/collection/csiro:64896), and place or symlink the data in `data/CS-Wild-Places` (this should point to the top-level directory, with the `data/` and `metadata/` subdirectories). Note that our experiments only require the post-processed submaps (folder `postproc_voxel_0.80m_rmground_normalised`), so you can ignore the raw submaps if space is an issue. Check the [README](./media/CS_Wild_Places_README.pdf) for further information and installation instructions for CS-Wild-Places.
|
| 101 |
+
|
| 102 |
+
Assuming you have followed the above instructions to setup Wild-Places, you can use the below command to post-process the Wild-Places ground submaps into the format required for CS-Wild-Places (set num_workers to a sensible number for your system). Note that this may take several hours depending on your CPU:
|
| 103 |
+
```
|
| 104 |
+
cd datasets/CSWildPlaces
|
| 105 |
+
python postprocess_wildplaces_ground.py \
|
| 106 |
+
--root '../../data/wild_places/data/' \
|
| 107 |
+
--cswildplaces_save_dir '../../data/CS-Wild-Places/data/CS-Wild-Places/postproc_voxel_0.80m_rmground_normalised' \
|
| 108 |
+
--remove_ground \
|
| 109 |
+
--downsample \
|
| 110 |
+
--downsample_type 'voxel' \
|
| 111 |
+
--voxel_size 0.8 \
|
| 112 |
+
--normalise \
|
| 113 |
+
--num_workers XX \
|
| 114 |
+
--verbose
|
| 115 |
+
```
|
| 116 |
+
Note that this script will generate the submaps used for the results reported in the paper, i.e. voxel downsampled, ground points removed, and normalised. We also provide a set of unnormalised submaps for convenience, and the corresponding Wild-Places ground submaps can be generated by omitting the `--normalise` option, and by setting `--cswildplaces_save_dir` to `'../../data/CS-Wild-Places/data/CS-Wild-Places/postproc_voxel_0.80m_rmground'`.
|
| 117 |
+
|
| 118 |
+
Before network training or evaluation, run the below code to generate pickles with positive and negative point clouds for each anchor point cloud:
|
| 119 |
+
|
| 120 |
+
```
|
| 121 |
+
cd datasets/CSWildPlaces
|
| 122 |
+
python generate_train_test_tuples.py \
|
| 123 |
+
--root '../../data/CS-Wild-Places/data/CS-Wild-Places/postproc_voxel_0.80m_rmground_normalised/' \
|
| 124 |
+
--eval_thresh '30' \
|
| 125 |
+
--pos_thresh '15' \
|
| 126 |
+
--neg_thresh '60' \
|
| 127 |
+
--buffer_thresh '30' \
|
| 128 |
+
--v2_only
|
| 129 |
+
```
|
| 130 |
+
Note that training and evaluation pickles are saved to the directory specified in `--root` by default.
|
| 131 |
+
|
| 132 |
+
### CS-Campus3D
|
| 133 |
+
We train on the CS-Campus3D dataset introduced in *CrossLoc3D: Aerial-Ground Cross-Source 3D Place Recognition* ([link](https://arxiv.org/pdf/2303.17778)).
|
| 134 |
+
|
| 135 |
+
Download the dataset [here](https://drive.google.com/file/d/1yxVicykRMg_HAfZG2EQUl1R3_wxpxStd/view?usp=sharing), and place or symlink the data in `data/benchmark_datasets_cs_campus3d`.
|
| 136 |
+
|
| 137 |
+
Run the below commands to convert the CS_Campus3D train and test pickles into a suitable format for use with HOTFormerLoc.
|
| 138 |
+
|
| 139 |
+
```
|
| 140 |
+
cd datasets/CSCampus3D
|
| 141 |
+
python save_queries_HOTFormerLoc_format.py
|
| 142 |
+
```
|
| 143 |
+
|
| 144 |
+
### Oxford RobotCar
|
| 145 |
+
We trained on a subset of Oxford RobotCar and the In-house (U.S., R.A., B.D.) datasets introduced in
|
| 146 |
+
*PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition* ([link](https://arxiv.org/pdf/1804.03492)).
|
| 147 |
+
There are two training datasets:
|
| 148 |
+
- Baseline Dataset - consists of a training subset of Oxford RobotCar
|
| 149 |
+
- Refined Dataset - consists of training subset of Oxford RobotCar and training subset of In-house
|
| 150 |
+
|
| 151 |
+
We report results on the Baseline set in the paper.
|
| 152 |
+
|
| 153 |
+
For dataset description see the PointNetVLAD paper or github repository ([link](https://github.com/mikacuy/pointnetvlad)).
|
| 154 |
+
|
| 155 |
+
You can download the dataset from
|
| 156 |
+
[here](https://drive.google.com/open?id=1rflmyfZ1v9cGGH0RL4qXRrKhg-8A-U9q)
|
| 157 |
+
([alternative link](https://drive.google.com/file/d/1-1HA9Etw2PpZ8zHd3cjrfiZa8xzbp41J/view?usp=sharing)), then place or symlink the data in `data/benchmark_datasets`.
|
| 158 |
+
|
| 159 |
+
Before network training or evaluation, run the below code to generate pickles with positive and negative point clouds for each anchor point cloud.
|
| 160 |
+
|
| 161 |
+
```generate pickles
|
| 162 |
+
cd datasets/pointnetvlad
|
| 163 |
+
|
| 164 |
+
# Generate training tuples for the Baseline Dataset
|
| 165 |
+
python generate_training_tuples_baseline.py --dataset_root '../../data/benchmark_datasets'
|
| 166 |
+
|
| 167 |
+
# (Optionally) Generate training tuples for the Refined Dataset
|
| 168 |
+
python generate_training_tuples_refine.py --dataset_root '../../data/benchmark_datasets'
|
| 169 |
+
|
| 170 |
+
# Generate evaluation tuples
|
| 171 |
+
python generate_test_sets.py --dataset_root '../../data/benchmark_datasets'
|
| 172 |
+
```
|
| 173 |
+
|
| 174 |
+
## Training
|
| 175 |
+
To train **HOTFormerLoc**, download the datasets and generate training pickles as described above for any dataset you wish to train on.
|
| 176 |
+
The configuration files for each dataset can be found in `config/`.
|
| 177 |
+
Set the `dataset_folder` parameter to the dataset root folder (only necessary if you have issues with the default relative path).
|
| 178 |
+
If running out of GPU memory, decrease `batch_split_size` and `val_batch_size` parameter value. If running out of RAM, you may need to decrease the `batch_size` parameter or try reducing `num_workers` to 1, but note that a smaller batch size may slightly reduce performance. We use wandb for logging by default, but this can be disabled in the config.
|
| 179 |
+
|
| 180 |
+
To train the network, run:
|
| 181 |
+
|
| 182 |
+
```
|
| 183 |
+
cd training
|
| 184 |
+
|
| 185 |
+
# To train HOTFormerLoc on CS-Wild-Places
|
| 186 |
+
python train.py --config ../config/config_cs-wild-places.txt --model_config ../models/hotformerloc_cs-wild-places_cfg.txt
|
| 187 |
+
|
| 188 |
+
# To train HOTFormerLoc on Wild-Places
|
| 189 |
+
python train.py --config ../config/config_wild-places.txt --model_config ../models/hotformerloc_wild-places_cfg.txt
|
| 190 |
+
|
| 191 |
+
# To train HOTFormerLoc on CS-Campus3D
|
| 192 |
+
python train.py --config ../config/config_cs-campus3d.txt --model_config ../models/hotformerloc_cs-campus3d_cfg.txt
|
| 193 |
+
|
| 194 |
+
# To train HOTFormerLoc on Oxford RobotCar
|
| 195 |
+
python train.py --config ../config/config_oxford.txt --model_config ../models/hotformerloc_oxford_cfg.txt
|
| 196 |
+
```
|
| 197 |
+
|
| 198 |
+
If training on a SLURM cluster, we provide the `submitit_train_job_single_node.py` script to automate training job submission, with support for automatic checkpointing and resubmission on job timeout. Make sure to set job parameters appropriately for your cluster.
|
| 199 |
+
|
| 200 |
+
### Pre-trained Weights
|
| 201 |
+
|
| 202 |
+
Pre-trained weights for HOTFormerLoc and other experiments can be downloaded and placed in the `weights` directory. You can download them individually below, or download and extract all from [this link](https://www.dropbox.com/scl/fi/qjyh966styqlye38a4c37/pretrained_weights.tar.gz?rlkey=qkuhupf3og7mfkfid8dts7xej&st=wx8q2v68&dl=0).
|
| 203 |
+
| Model | Dataset | Weights Download |
|
| 204 |
+
|--------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 205 |
+
| HOTFormerLoc | CS-Wild-Places | [hotformerloc_cs-wild-places.pth](https://www.dropbox.com/scl/fi/bcgcmbyic591f3bviib64/hotformerloc_cs-wild-places.pth?rlkey=vrw0seq6nfbsihijbhqatll2u&st=d7enawjw&dl=0) |
|
| 206 |
+
| HOTFormerLoc | CS-Campus3D | [hotformerloc_cs-campus3D.pth](https://www.dropbox.com/scl/fi/l9jyn5310gjf80zw35v7z/hotformerloc_cs-campus3d.pth?rlkey=s0bpcysyc1xt2357shhclpnlw&st=zhh679b9&dl=0) |
|
| 207 |
+
| HOTFormerLoc | Wild-Places | [hotformerloc_wild-places.pth](https://www.dropbox.com/scl/fi/yd94iy9dq6k1m312ifnyx/hotformerloc_wild-places.pth?rlkey=5ndv0p48c7hyjvah90eab1l1e&st=zl1716hh&dl=0) |
|
| 208 |
+
| HOTFormerLoc | Oxford RobotCar | [hotformerloc_oxford.pth](https://www.dropbox.com/scl/fi/4r3470zo9zomkyjys5nrm/hotformerloc_oxford.pth?rlkey=eocfo3yvmhuqqgsmjtypgf78s&st=ybhzcj6y&dl=0) |
|
| 209 |
+
| MinkLoc3Dv2 | CS-Wild-Places | [minkloc3dv2_cs-wild-places.pth](https://www.dropbox.com/scl/fi/2w4l8gv7qbmp0lh4eztsf/minkloc3dv2_cs-wild-places.pth?rlkey=udxvtkr6yfgdnyizra4gmw0qa&st=p0evrh61&dl=0) |
|
| 210 |
+
| CrossLoc3D | CS-Wild-Places | [crossloc3d_cs-wild-places.pth](https://www.dropbox.com/scl/fi/5ikt1jvr2fabiaw8mhqbb/crossloc3d_cs-wild-places.pth?rlkey=lb4gp2n814im3twy4zy5d67bd&st=znup5ewi&dl=0) |
|
| 211 |
+
| LoGG3D-Net | CS-Wild-Places | [logg3dnet_cs-wild-places.pth](https://www.dropbox.com/scl/fi/51se5akdyg35xy2dsrosj/logg3dnet_cs-wild-places.pth?rlkey=4nvvp8gw656wdbj3081jzcn0i&st=n5ytpnzc&dl=0) |
|
| 212 |
+
|
| 213 |
+
## Evaluation
|
| 214 |
+
|
| 215 |
+
To evaluate the pretrained models run the following commands:
|
| 216 |
+
|
| 217 |
+
```
|
| 218 |
+
cd eval
|
| 219 |
+
|
| 220 |
+
# To evaluate HOTFormerLoc trained on CS-Wild-Places
|
| 221 |
+
python pnv_evaluate.py --config ../config/config_cs-wild-places.txt --model_config ../models/hotformerloc_cs-wild-places_cfg.txt --weights ../weights/hotformerloc_cs-wild-places.pth
|
| 222 |
+
|
| 223 |
+
# To evaluate HOTFormerLoc trained on Wild-Places
|
| 224 |
+
python pnv_evaluate.py --config ../config/config_wild-places.txt --model_config ../models/hotformerloc_wild-places_cfg.txt --weights ../weights/hotformerloc_wild-places.pth
|
| 225 |
+
|
| 226 |
+
# To evaluate HOTFormerLoc trained on CS-Campus3D
|
| 227 |
+
python pnv_evaluate.py --config ../config/config_cs-campus3d.txt --model_config ../models/hotformerloc_cs-campus3d_cfg.txt --weights ../weights/hotformerloc_cs-campus3d.pth
|
| 228 |
+
|
| 229 |
+
# To evaluate HOTFormerLoc trained on Oxford RobotCar
|
| 230 |
+
python pnv_evaluate.py --config ../config/config_oxford.txt --model_config ../models/hotformerloc_oxford_cfg.txt --weights ../weights/hotformerloc_oxford.pth
|
| 231 |
+
```
|
| 232 |
+
|
| 233 |
+
Below are the results for all evaluated models on CS-Wild-Places:
|
| 234 |
+
|
| 235 |
+

|
| 236 |
+
*Comparison of SOTA on CS-Wild-Places Baseline evaluation set.*
|
| 237 |
+
|
| 238 |
+

|
| 239 |
+
*Comparison of SOTA on CS-Wild-Places Unseen evaluation set.*
|
| 240 |
+
|
| 241 |
+
See the paper for full results and comparison with SOTA on all datasets.
|
| 242 |
+
|
| 243 |
+
## Acknowledgements
|
| 244 |
+
|
| 245 |
+
Special thanks to the authors of [MinkLoc3Dv2](https://github.com/jac99/MinkLoc3Dv2) and [OctFormer](https://github.com/octree-nn/octformer) for their excellent code, which formed the foundation of this codebase. We would also like to thank the authors of [Wild-Places](https://csiro-robotics.github.io/Wild-Places/) for their fantastic dataset which serves as the base that CS-Wild-Places is built upon.
|
media/CSWildPlaces_overview.png
ADDED
|
Git LFS Details
|
media/CS_Wild_Places_README.pdf
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:64635a1575203bab6553cd0935888639eb0080e7b4b89f31803b13109663763e
|
| 3 |
+
size 8727600
|
media/dataset_cswp_baseline.png
ADDED
|
Git LFS Details
|
media/dataset_cswp_unseen.png
ADDED
|
Git LFS Details
|
media/hotformerloc_architecture.png
ADDED
|
Git LFS Details
|
media/radar_plot.svg
ADDED
|
|